The Early Detection and Follow-up of the Highly Obscured Type II Supernova 2016ija/DLT16am
暂无分享,去创建一个
M. Phillips | K. Maguire | S. Smartt | M. Sullivan | J. Sollerman | S. Jha | C. McCully | D. Young | R. Foley | K. Smith | M. Stritzinger | I. Arcavi | G. Hosseinzadeh | D. Howell | S. Valenti | L. Galbany | D. Coulter | C. Kilpatrick | A. Piro | C. Rojas-Bravo | J. Haislip | V. Kouprianov | D. Reichart | L. Tartaglia | D. Sand | N. Morrell | A. Gal-yam | M. Botticella | P. Mazzali | E. Hsiao | F. Taddia | S. Wyatt | J. Anderson | C. Ashall | R. Cartier | T. W. Chen | A. Cikota | M. Valle | A. Gal-Yam | C. Gall | J. Harmanen | C. Inserra | E. Kankare | H. Kuncarayakti | T. Maccarone | S. Mattila | A. Melandri | G. Pignata | S. Prentice | G. Pignata | M. Stritzinger | Joseph P. Anderson | T.-W. Chen | M. Phillips | P. Mazzali | D. Young | M. Phillips | M. Sullivan
[1] A. Vaughan,et al. The Optical Design of the 40-in. Telescope and of the Irenee DuPont Telescope at Las Campanas Observatory, Chile. , 1973, Applied optics.
[2] Daniel Enard,et al. The ESO Faint Object Spectrograph and Camera / EFOSC , 1984 .
[3] J. Mathis,et al. The relationship between infrared, optical, and ultraviolet extinction , 1989 .
[4] R. Kirshner,et al. Expanding Photospheres of Type II Supernovae and the Extragalactic Distance Scale , 1992, astro-ph/9204004.
[5] L. Ho,et al. The expanding photosphere method applied to SN 1992am AT cz = 14 600 km/s , 1994 .
[6] R. Kennicutt,et al. Past and Future Star Formation in Disk Galaxies , 1994 .
[7] STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.
[8] A. Kinney,et al. The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.
[9] Scott C. Chapman,et al. A Search for the submillimetre counterparts to Lyman break galaxies , 1999 .
[10] On the presence of silicon and carbon in the pre-maximum spectrum of the Type Ia SN 1990N , 2000, astro-ph/0009245.
[11] The Distance to SN 1999em from the Expanding Photosphere Method , 2001, astro-ph/0105006.
[12] J. Stein,et al. On the Thermonuclear Runaway in Type Ia Supernovae: How to Run Away? , 2001, astro-ph/0104226.
[13] An empirical calibration of star formation rate estimators , 2001, astro-ph/0112556.
[14] R. Chornock,et al. The Distance to SN 1999em in NGC 1637 from the Expanding Photosphere Method , 2001, astro-ph/0109535.
[15] Philip A. Pinto,et al. Type II Supernovae as Standardized Candles , 2002 .
[16] M. Hamuy. Observed and Physical Properties of Core-Collapse Supernovae , 2002, astro-ph/0209174.
[17] J. Surace,et al. The IRAS Revised Bright Galaxy Sample , 2003, astro-ph/0306263.
[18] M. Turatto,et al. Photometry and Spectroscopy of the Type IIP SN 1999em from Outburst to Dust Formation , 2003 .
[19] H Germany,et al. A Method of Correcting Near‐Infrared Spectra for Telluric Absorption , 2002, astro-ph/0211255.
[20] Max Pettini,et al. [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.
[21] Moscow,et al. On the source of the late-time infrared luminosity of SN 1998S and other Type II supernovae , 2004, astro-ph/0404533.
[22] B. Carney,et al. PROMPT: Panchromatic robotic optical monitoring and polarimetry telescopes , 2005 .
[23] S. Smartt,et al. The progenitor of SN 2005cs in the Whirlpool Galaxy , 2005, astro-ph/0507502.
[24] W. B. Burton,et al. The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.
[25] G. Anupama,et al. Photometric and spectroscopic evolution of the Type IIP supernova SN 2004et , 2006, astro-ph/0608432.
[26] Quantitative spectroscopic analysis of and distance to SN1999em , 2005, astro-ph/0510526.
[27] Gary Muller,et al. Design of the Gemini near-infrared spectrograph , 2006, SPIE Astronomical Telescopes + Instrumentation.
[28] R. Chevalier,et al. Optical Signatures of Circumstellar Interaction in Type IIP Supernovae , 2007, astro-ph/0703468.
[29] Bangalore,et al. Type IIP supernova SN 2004et: a multiwavelength study in X-ray, optical and radio , 2007, 0707.3485.
[30] Robert M. Quimby,et al. SN 2006bp: Probing the Shock Breakout of a Type II-P Supernova , 2007, 0705.3478.
[31] J. Tonry,et al. Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.
[32] R. Kotak,et al. Optical and infrared observations of SN 2002dj: some possible common properties of fast‐expanding Type Ia supernovae , 2008, 0805.1089.
[33] Robert P. Kirshner,et al. Using Quantitative Spectroscopic Analysis to Determine the Properties and Distances of Type II Plateau Supernovae: SN 2005cs and SN 2006bp , 2007, 0711.1815.
[34] A. Efstathiou,et al. Discovery of a Very Highly Extinguished Supernova in a Luminous Infrared Galaxy , 2008, 0810.2885.
[35] M. Dolci,et al. SN 2002cv: a heavily obscured Type Ia supernova , 2007, 0710.4503.
[36] M. Honsberg,et al. GROND—a 7-Channel Imager , 2008, 0801.4801.
[37] S. Savaglio,et al. The 2175 Å Dust Feature in a Gamma-Ray Burst Afterglow at Redshift 2.45 , 2008, 0805.2824.
[38] Stephen J. Smartt,et al. Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.
[39] Ernest E. Croner,et al. The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.
[40] Spitzer Science Center,et al. Optical and near infrared coverage of SN 2004et: physical parameters and comparison with other type IIP supernovae , 2009, 0912.3111.
[41] S. E. Woosley,et al. The diversity of type Ia supernovae from broken symmetries , 2009, Nature.
[42] M. Asplund,et al. The chemical composition of the Sun , 2009, 0909.0948.
[43] S. Smartt,et al. SN 2005cs in M51 – II. Complete evolution in the optical and the near-infrared , 2009, 0901.2075.
[44] Steven M. Crawford,et al. PySALT: the SALT science pipeline , 2010, Astronomical Telescopes + Instrumentation.
[45] Daniel Kasen,et al. SEEING THE COLLISION OF A SUPERNOVA WITH ITS COMPANION STAR , 2009, 0909.0275.
[46] K. Maguire,et al. SN 2009md: another faint supernova from a low-mass progenitor , 2010, 1011.6558.
[47] Chris L. Fryer,et al. SPECTRA OF TYPE IA SUPERNOVAE FROM DOUBLE DEGENERATE MERGERS , 2010, 1007.0570.
[48] Douglas P. Finkbeiner,et al. MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.
[49] W. M. Wood-Vasey,et al. SUPERNOVA 2009kf: AN ULTRAVIOLET BRIGHT TYPE IIP SUPERNOVA DISCOVERED WITH PAN-STARRS 1 AND GALEX , 2010, 1001.5427.
[50] R. Manuputy,et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope , 2011, 1110.1944.
[51] Ice,et al. THE MASSIVE PROGENITOR OF THE POSSIBLE TYPE II-LINEAR SUPERNOVA 2009hd IN MESSIER 66 , 2011, 1108.2645.
[52] Eli Waxman,et al. THE EARLY UV/OPTICAL EMISSION FROM CORE-COLLAPSE SUPERNOVAE , 2010, 1002.3414.
[53] J. Prieto,et al. THE COSMIC CORE-COLLAPSE SUPERNOVA RATE DOES NOT MATCH THE MASSIVE-STAR FORMATION RATE , 2011, 1102.1977.
[54] John L. Tonry,et al. An Early Warning System for Asteroid Impact , 2010, 1011.1028.
[55] Federica B. Bianco,et al. Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star , 2011, Nature.
[56] Gaël Varoquaux,et al. The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.
[57] V. S. Dhillon,et al. A list of galaxies for gravitational wave searches , 2011, 1103.0695.
[58] Richard Walters,et al. REAL-TIME DETECTION AND RAPID MULTIWAVELENGTH FOLLOW-UP OBSERVATIONS OF A HIGHLY SUBLUMINOUS TYPE II-P SUPERNOVA FROM THE PALOMAR TRANSIENT FACTORY SURVEY , 2011, 1106.0400.
[59] A. Efstathiou,et al. DISCOVERY OF TWO SUPERNOVAE IN THE NUCLEAR REGIONS OF THE LUMINOUS INFRARED GALAXY IC 883 , 2011, 1112.0777.
[60] L. Kewley,et al. Eliminating error in the chemical abundance scale for extragalactic H ii regions , 2012, 1203.5021.
[61] P. Chandra,et al. X-RAY EMISSION FROM SN 2004dj: A TALE OF TWO SHOCKS , 2012, 1206.4033.
[62] T. N. Sokolova,et al. The bright Type IIP SN 2009bw, showing signs of interaction , 2012, 1202.0659.
[63] J. C. Lee,et al. A comparison between star formation rate diagnostics and rate of core collapse supernovae within 11 Mpc , 2011, 1111.1692.
[64] J. Sollerman,et al. The Rate of Supernovae at Redshift 0.1 − 1.0 : the Stockholm VIMOS Supernova Survey IV , 2012, 1206.6897.
[65] A. Gal-yam,et al. WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.
[66] Filippo Mannucci,et al. Type-Ia Supernova Rates and the Progenitor Problem: A Review , 2011, Publications of the Astronomical Society of Australia.
[67] N. Morrell,et al. SUPERNOVA 2008bk AND ITS RED SUPERGIANT PROGENITOR , 2010, 1011.5873.
[68] Adam G. Riess,et al. THE EXTENDED HUBBLE SPACE TELESCOPE SUPERNOVA SURVEY: THE RATE OF CORE COLLAPSE SUPERNOVAE TO z ∼ 1 , 2012, 1208.0342.
[69] D. Fox,et al. CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE II SUPERNOVAE: EVIDENCE FOR THREE DISTINCT PHOTOMETRIC SUBTYPES , 2012, 1206.2029.
[70] D. Poznanski,et al. THE RED SUPERGIANT PROGENITOR OF SUPERNOVA 2012aw (PTF12bvh) IN MESSIER 95 , 2012, 1207.2811.
[71] A. Efstathiou,et al. CORE-COLLAPSE SUPERNOVAE MISSED BY OPTICAL SURVEYS , 2012, 1206.1314.
[72] J. Prochaska,et al. An empirical relation between sodium absorption and dust extinction , 2012, 1206.6107.
[73] G. Vaucouleurs,et al. Third Reference Catalogue of Bright Galaxies , 2012 .
[74] Nathaniel R. Butler,et al. A COMPACT DEGENERATE PRIMARY-STAR PROGENITOR OF SN 2011fe , 2011, 1111.0966.
[75] R. Kotak,et al. THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR , 2012, 1207.5975.
[76] J. Prieto,et al. THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.
[77] Bruce C. Bigelow,et al. FIRE: A Facility Class Near-Infrared Echelle Spectrometer for the Magellan Telescopes , 2013 .
[78] W. Freudling,et al. Automated data reduction workflows for astronomy , 2013, 1311.5411.
[79] Wendy L. Freedman,et al. ON THE SOURCE OF THE DUST EXTINCTION IN TYPE Ia SUPERNOVAE AND THE DISCOVERY OF ANOMALOUSLY STRONG Na i ABSORPTION , 2013, 1311.0147.
[80] H. Courtois,et al. COSMICFLOWS-2: THE DATA , 2013, 1307.7213.
[81] Wei Zheng,et al. THE VERY YOUNG TYPE Ia SUPERNOVA 2013dy: DISCOVERY, AND STRONG CARBON ABSORPTION IN EARLY-TIME SPECTRA , 2013, 1310.5188.
[82] E. Nakar,et al. CONSTRAINTS ON SHALLOW 56Ni FROM THE EARLY LIGHT CURVES OF TYPE Ia SUPERNOVAE , 2012, 1211.6438.
[83] K. Maguire,et al. Hubble Space Telescope spectra of the type Ia supernova SN 2011fe: a tail of low-density, high-velocity material with Z < Z⊙ , 2013, 1305.2356.
[84] Australian National University,et al. Low luminosity Type II supernovae - II. Pointing towards moderate mass precursors , 2014, 1401.5426.
[85] A. Pastorello,et al. The nature of supernovae 2010O and 2010P in Arp 299 - I. Near-infrared and optical evolution , 2013, 1311.6408.
[86] Carnegie,et al. A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind , 2014, Nature.
[87] R. Kotak,et al. SN 2005at - A neglected type Ic supernova at 10 Mpc , 2014, 1409.1758.
[88] R. Foley,et al. A sample of Type II-L supernovae , 2014, 1409.1536.
[89] Kevin Krisciunas,et al. CHARACTERIZING THE V-BAND LIGHT-CURVES OF HYDROGEN-RICH TYPE II SUPERNOVAE , 2014, 1403.7091.
[90] S. Smartt,et al. The first month of evolution of the slow-rising Type IIP SN 2013ej in M74 , 2013, 1309.4269.
[91] A.Goobar,et al. Constraints on the origin of the first light from SN2014J , 2014, 1410.1363.
[92] R. Foley,et al. Photometric and spectroscopic properties of Type II-P supernovae , 2014, 1404.0378.
[93] P. McCarthy,et al. Analysis of blueshifted emission peaks in Type II supernovae , 2014, 1404.0581.
[94] S. Gezari,et al. TOWARD CHARACTERIZATION OF THE TYPE IIP SUPERNOVA PROGENITOR POPULATION: A STATISTICAL SAMPLE OF LIGHT CURVES FROM Pan-STARRS1 , 2014, 1404.2004.
[95] P. McCarthy,et al. Hα SPECTRAL DIVERSITY OF TYPE II SUPERNOVAE: CORRELATIONS WITH PHOTOMETRIC PROPERTIES , 2014, 1403.7089.
[96] L. Ho,et al. THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G): STELLAR MASSES, SIZES, AND RADIAL PROFILES FOR 2352 NEARBY GALAXIES , 2015, 1505.03534.
[97] G. Pignata,et al. The rise-time of Type II supernovae , 2015, 1505.02988.
[98] Las Cumbres Observatory Global Telescope Network,et al. Supernova 2013by: a Type IIL supernova with a IIP-like light-curve drop , 2015, 1501.06491.
[99] M. Radovich,et al. Supernova rates from the SUDARE VST-Omegacam search. I , 2015, 1509.04496.
[100] Andrew Becker,et al. HOTPANTS: High Order Transform of PSF ANd Template Subtraction , 2015 .
[101] M. Sullivan,et al. TYPE II SUPERNOVA ENERGETICS AND COMPARISON OF LIGHT CURVES TO SHOCK-COOLING MODELS , 2015, 1512.00733.
[102] M. Sullivan,et al. PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects , 2014, 1411.0299.
[103] J. Pepper,et al. CONSTRAINTS ON THE ORIGIN OF THE FIRST LIGHT FROM SN 2014J , 2015 .
[104] Adam G. Riess,et al. THE RATE OF CORE COLLAPSE SUPERNOVAE TO REDSHIFT 2.5 FROM THE CANDELS AND CLASH SUPERNOVA SURVEYS , 2015, 1509.06574.
[105] Brian D. Bue,et al. A strong ultraviolet pulse from a newborn type Ia supernova , 2015, Nature.
[106] M. L. Pumo,et al. SN 2013ab : A normal type IIP supernova in NGC 5669 , 2015, 1504.00838.
[107] Mansi M. Kasliwal,et al. PTF11iqb: cool supergiant mass-loss that bridges the gap between Type IIn and normal supernovae , 2015, 1501.02820.
[108] M. Sullivan,et al. FLASH SPECTROSCOPY: EMISSION LINES FROM THE IONIZED CIRCUMSTELLAR MATERIAL AROUND <10-DAY-OLD TYPE II SUPERNOVAE , 2015, 1512.00846.
[109] K. Maguire,et al. The Progenitor and Early Evolution of the Type IIb SN 2016gkg , 2016, 1611.00419.
[110] G. Williger,et al. UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE , 2015, 1511.08402.
[111] A. Gal-yam,et al. UNSUPERVISED CLUSTERING OF TYPE II SUPERNOVA LIGHT CURVES , 2016, 1602.01446.
[112] R. Kotak,et al. Supernova 2013fc in a circumnuclear ring of a luminous infrared galaxy: The big brother of SN 1998S , 2015, 1509.05389.
[113] J. Prieto,et al. Type II supernovae as probes of environment metallicity: observations of host H II regions , 2016, 1602.00011.
[114] M. Phillips,et al. SPIRITS 15c and SPIRITS 14buu: Two Obscured Supernovae in the Nearby Star-forming Galaxy IC 2163 , 2016, 1609.04444.
[115] M. L. Pumo,et al. OPTICAL AND ULTRAVIOLET OBSERVATIONS OF THE VERY YOUNG TYPE IIP SN 2014cx IN NGC 337 , 2016, 1609.02333.
[116] Armin Rest,et al. Constraints on the Progenitor of SN 2016gkg from Its Shock-cooling Light Curve , 2016, 1611.06451.
[117] W. M. Wood-Vasey,et al. The Pan-STARRS1 Surveys , 2016, 1612.05560.
[118] Davis,et al. The diversity of Type II supernova versus the similarity in their progenitors , 2016, 1603.08953.
[119] Warren R. Brown,et al. SN 2012cg: EVIDENCE FOR INTERACTION BETWEEN A NORMAL SN Ia AND A NON-DEGENERATE BINARY COMPANION , 2015, 1507.07261.
[120] E. Waxman,et al. UV/Optical Emission from the Expanding Envelopes of Type II Supernovae , 2016, 1607.03700.
[121] M. Stritzinger,et al. Type II Supernova Spectral Diversity. II. Spectroscopic and Photometric Correlations , 2017, 1709.02799.
[122] William H. Lee,et al. Confined dense circumstellar material surrounding a regular type II supernova , 2017, Nature Physics.
[123] K. Maguire,et al. LSQ14efd: observations of the cooling of a shock break-out event in a type Ic Supernova , 2017, 1707.04644.
[124] P. Brown,et al. Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor , 2017, Proceedings of the International Astronomical Union.
[125] I. Arcavi,et al. Numerically Modeling the First Peak of the Type IIb SN 2016gkg , 2017, 1703.00913.
[126] A. Corsi,et al. An Empirical Limit on the Kilonova Rate from the DLT40 One Day Cadence Supernova Survey , 2017, 1710.05864.
[127] Astrophysics,et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0 , 2017, 1706.07060.
[128] Saurabh W. Jha,et al. The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck , 2017, 1710.05854.
[129] Carnegie,et al. Early Observations of the Type Ia Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing , 2017, 1708.07124.
[130] A. Gal-yam,et al. Exploring the Efficacy and Limitations of Shock-cooling Models: New Analysis of Type II Supernovae Observed by the Kepler Mission , 2016, 1612.02805.
[131] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.