The Early Detection and Follow-up of the Highly Obscured Type II Supernova 2016ija/DLT16am

European Organisation for Astronomical Research in the Southern hemisphere, Chile as part of the ESO large programme [198.A-0915]; Gemini Observatory [GN-2016B-Q-57]; NSF [AST-1412504, AST-1517649, 1313484, AST-1518052]; Carlsberg Foundation; STFC [ST/L000679/1]; EU/FP7-ERC [615929]; Alexander von Humboldt Foundation of Germany; DFG [HA 1850/28-1]; Ministry of Economy, Development, and Tourism's Millennium Science Initiative [IC120009]; Finnish Cultural Foundation; Vilho, Yrjo, and Kalle Vaisala Foundation of the Finnish Academy of Science and Letters; VILLUM FONDEN [13261]; NUTS by the Instrument Center for Danish Astrophysics (IDA); US National Science Foundation [AST-1311862]; National Science Foundation [AST-1008343, AST-1613472, AST-1613426]; EU via ERC grant [725161]; Quantum Universe I-Core program; ISF; BSF Transformative program; Kimmel award; STFC through an Ernest Rutherford Fellowship; Gordon & Betty Moore Foundation; Alfred P. Sloan Foundation; David and Lucile Packard Foundation

[1]  A. Vaughan,et al.  The Optical Design of the 40-in. Telescope and of the Irenee DuPont Telescope at Las Campanas Observatory, Chile. , 1973, Applied optics.

[2]  Daniel Enard,et al.  The ESO Faint Object Spectrograph and Camera / EFOSC , 1984 .

[3]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[4]  R. Kirshner,et al.  Expanding Photospheres of Type II Supernovae and the Extragalactic Distance Scale , 1992, astro-ph/9204004.

[5]  L. Ho,et al.  The expanding photosphere method applied to SN 1992am AT cz = 14 600 km/s , 1994 .

[6]  R. Kennicutt,et al.  Past and Future Star Formation in Disk Galaxies , 1994 .

[7]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[8]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[9]  Scott C. Chapman,et al.  A Search for the submillimetre counterparts to Lyman break galaxies , 1999 .

[10]  On the presence of silicon and carbon in the pre-maximum spectrum of the Type Ia SN 1990N , 2000, astro-ph/0009245.

[11]  The Distance to SN 1999em from the Expanding Photosphere Method , 2001, astro-ph/0105006.

[12]  J. Stein,et al.  On the Thermonuclear Runaway in Type Ia Supernovae: How to Run Away? , 2001, astro-ph/0104226.

[13]  An empirical calibration of star formation rate estimators , 2001, astro-ph/0112556.

[14]  R. Chornock,et al.  The Distance to SN 1999em in NGC 1637 from the Expanding Photosphere Method , 2001, astro-ph/0109535.

[15]  Philip A. Pinto,et al.  Type II Supernovae as Standardized Candles , 2002 .

[16]  M. Hamuy Observed and Physical Properties of Core-Collapse Supernovae , 2002, astro-ph/0209174.

[17]  J. Surace,et al.  The IRAS Revised Bright Galaxy Sample , 2003, astro-ph/0306263.

[18]  M. Turatto,et al.  Photometry and Spectroscopy of the Type IIP SN 1999em from Outburst to Dust Formation , 2003 .

[19]  H Germany,et al.  A Method of Correcting Near‐Infrared Spectra for Telluric Absorption , 2002, astro-ph/0211255.

[20]  Max Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[21]  Moscow,et al.  On the source of the late-time infrared luminosity of SN 1998S and other Type II supernovae , 2004, astro-ph/0404533.

[22]  B. Carney,et al.  PROMPT: Panchromatic robotic optical monitoring and polarimetry telescopes , 2005 .

[23]  S. Smartt,et al.  The progenitor of SN 2005cs in the Whirlpool Galaxy , 2005, astro-ph/0507502.

[24]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[25]  G. Anupama,et al.  Photometric and spectroscopic evolution of the Type IIP supernova SN 2004et , 2006, astro-ph/0608432.

[26]  Quantitative spectroscopic analysis of and distance to SN1999em , 2005, astro-ph/0510526.

[27]  Gary Muller,et al.  Design of the Gemini near-infrared spectrograph , 2006, SPIE Astronomical Telescopes + Instrumentation.

[28]  R. Chevalier,et al.  Optical Signatures of Circumstellar Interaction in Type IIP Supernovae , 2007, astro-ph/0703468.

[29]  Bangalore,et al.  Type IIP supernova SN 2004et: a multiwavelength study in X-ray, optical and radio , 2007, 0707.3485.

[30]  Robert M. Quimby,et al.  SN 2006bp: Probing the Shock Breakout of a Type II-P Supernova , 2007, 0705.3478.

[31]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[32]  R. Kotak,et al.  Optical and infrared observations of SN 2002dj: some possible common properties of fast‐expanding Type Ia supernovae , 2008, 0805.1089.

[33]  Robert P. Kirshner,et al.  Using Quantitative Spectroscopic Analysis to Determine the Properties and Distances of Type II Plateau Supernovae: SN 2005cs and SN 2006bp , 2007, 0711.1815.

[34]  A. Efstathiou,et al.  Discovery of a Very Highly Extinguished Supernova in a Luminous Infrared Galaxy , 2008, 0810.2885.

[35]  M. Dolci,et al.  SN 2002cv: a heavily obscured Type Ia supernova , 2007, 0710.4503.

[36]  M. Honsberg,et al.  GROND—a 7-Channel Imager , 2008, 0801.4801.

[37]  S. Savaglio,et al.  The 2175 Å Dust Feature in a Gamma-Ray Burst Afterglow at Redshift 2.45 , 2008, 0805.2824.

[38]  Stephen J. Smartt,et al.  Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.

[39]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[40]  Spitzer Science Center,et al.  Optical and near infrared coverage of SN 2004et: physical parameters and comparison with other type IIP supernovae , 2009, 0912.3111.

[41]  S. E. Woosley,et al.  The diversity of type Ia supernovae from broken symmetries , 2009, Nature.

[42]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[43]  S. Smartt,et al.  SN 2005cs in M51 – II. Complete evolution in the optical and the near-infrared , 2009, 0901.2075.

[44]  Steven M. Crawford,et al.  PySALT: the SALT science pipeline , 2010, Astronomical Telescopes + Instrumentation.

[45]  Daniel Kasen,et al.  SEEING THE COLLISION OF A SUPERNOVA WITH ITS COMPANION STAR , 2009, 0909.0275.

[46]  K. Maguire,et al.  SN 2009md: another faint supernova from a low-mass progenitor , 2010, 1011.6558.

[47]  Chris L. Fryer,et al.  SPECTRA OF TYPE IA SUPERNOVAE FROM DOUBLE DEGENERATE MERGERS , 2010, 1007.0570.

[48]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[49]  W. M. Wood-Vasey,et al.  SUPERNOVA 2009kf: AN ULTRAVIOLET BRIGHT TYPE IIP SUPERNOVA DISCOVERED WITH PAN-STARRS 1 AND GALEX , 2010, 1001.5427.

[50]  R. Manuputy,et al.  X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope , 2011, 1110.1944.

[51]  Ice,et al.  THE MASSIVE PROGENITOR OF THE POSSIBLE TYPE II-LINEAR SUPERNOVA 2009hd IN MESSIER 66 , 2011, 1108.2645.

[52]  Eli Waxman,et al.  THE EARLY UV/OPTICAL EMISSION FROM CORE-COLLAPSE SUPERNOVAE , 2010, 1002.3414.

[53]  J. Prieto,et al.  THE COSMIC CORE-COLLAPSE SUPERNOVA RATE DOES NOT MATCH THE MASSIVE-STAR FORMATION RATE , 2011, 1102.1977.

[54]  John L. Tonry,et al.  An Early Warning System for Asteroid Impact , 2010, 1011.1028.

[55]  Federica B. Bianco,et al.  Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star , 2011, Nature.

[56]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[57]  V. S. Dhillon,et al.  A list of galaxies for gravitational wave searches , 2011, 1103.0695.

[58]  Richard Walters,et al.  REAL-TIME DETECTION AND RAPID MULTIWAVELENGTH FOLLOW-UP OBSERVATIONS OF A HIGHLY SUBLUMINOUS TYPE II-P SUPERNOVA FROM THE PALOMAR TRANSIENT FACTORY SURVEY , 2011, 1106.0400.

[59]  A. Efstathiou,et al.  DISCOVERY OF TWO SUPERNOVAE IN THE NUCLEAR REGIONS OF THE LUMINOUS INFRARED GALAXY IC 883 , 2011, 1112.0777.

[60]  L. Kewley,et al.  Eliminating error in the chemical abundance scale for extragalactic H ii regions , 2012, 1203.5021.

[61]  P. Chandra,et al.  X-RAY EMISSION FROM SN 2004dj: A TALE OF TWO SHOCKS , 2012, 1206.4033.

[62]  T. N. Sokolova,et al.  The bright Type IIP SN 2009bw, showing signs of interaction , 2012, 1202.0659.

[63]  J. C. Lee,et al.  A comparison between star formation rate diagnostics and rate of core collapse supernovae within 11 Mpc , 2011, 1111.1692.

[64]  J. Sollerman,et al.  The Rate of Supernovae at Redshift 0.1 − 1.0 : the Stockholm VIMOS Supernova Survey IV , 2012, 1206.6897.

[65]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[66]  Filippo Mannucci,et al.  Type-Ia Supernova Rates and the Progenitor Problem: A Review , 2011, Publications of the Astronomical Society of Australia.

[67]  N. Morrell,et al.  SUPERNOVA 2008bk AND ITS RED SUPERGIANT PROGENITOR , 2010, 1011.5873.

[68]  Adam G. Riess,et al.  THE EXTENDED HUBBLE SPACE TELESCOPE SUPERNOVA SURVEY: THE RATE OF CORE COLLAPSE SUPERNOVAE TO z ∼ 1 , 2012, 1208.0342.

[69]  D. Fox,et al.  CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE II SUPERNOVAE: EVIDENCE FOR THREE DISTINCT PHOTOMETRIC SUBTYPES , 2012, 1206.2029.

[70]  D. Poznanski,et al.  THE RED SUPERGIANT PROGENITOR OF SUPERNOVA 2012aw (PTF12bvh) IN MESSIER 95 , 2012, 1207.2811.

[71]  A. Efstathiou,et al.  CORE-COLLAPSE SUPERNOVAE MISSED BY OPTICAL SURVEYS , 2012, 1206.1314.

[72]  J. Prochaska,et al.  An empirical relation between sodium absorption and dust extinction , 2012, 1206.6107.

[73]  G. Vaucouleurs,et al.  Third Reference Catalogue of Bright Galaxies , 2012 .

[74]  Nathaniel R. Butler,et al.  A COMPACT DEGENERATE PRIMARY-STAR PROGENITOR OF SN 2011fe , 2011, 1111.0966.

[75]  R. Kotak,et al.  THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR , 2012, 1207.5975.

[76]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[77]  Bruce C. Bigelow,et al.  FIRE: A Facility Class Near-Infrared Echelle Spectrometer for the Magellan Telescopes , 2013 .

[78]  W. Freudling,et al.  Automated data reduction workflows for astronomy , 2013, 1311.5411.

[79]  Wendy L. Freedman,et al.  ON THE SOURCE OF THE DUST EXTINCTION IN TYPE Ia SUPERNOVAE AND THE DISCOVERY OF ANOMALOUSLY STRONG Na i ABSORPTION , 2013, 1311.0147.

[80]  H. Courtois,et al.  COSMICFLOWS-2: THE DATA , 2013, 1307.7213.

[81]  Wei Zheng,et al.  THE VERY YOUNG TYPE Ia SUPERNOVA 2013dy: DISCOVERY, AND STRONG CARBON ABSORPTION IN EARLY-TIME SPECTRA , 2013, 1310.5188.

[82]  E. Nakar,et al.  CONSTRAINTS ON SHALLOW 56Ni FROM THE EARLY LIGHT CURVES OF TYPE Ia SUPERNOVAE , 2012, 1211.6438.

[83]  K. Maguire,et al.  Hubble Space Telescope spectra of the type Ia supernova SN 2011fe: a tail of low-density, high-velocity material with Z < Z⊙ , 2013, 1305.2356.

[84]  Australian National University,et al.  Low luminosity Type II supernovae - II. Pointing towards moderate mass precursors , 2014, 1401.5426.

[85]  A. Pastorello,et al.  The nature of supernovae 2010O and 2010P in Arp 299 - I. Near-infrared and optical evolution , 2013, 1311.6408.

[86]  Carnegie,et al.  A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind , 2014, Nature.

[87]  R. Kotak,et al.  SN 2005at - A neglected type Ic supernova at 10 Mpc , 2014, 1409.1758.

[88]  R. Foley,et al.  A sample of Type II-L supernovae , 2014, 1409.1536.

[89]  Kevin Krisciunas,et al.  CHARACTERIZING THE V-BAND LIGHT-CURVES OF HYDROGEN-RICH TYPE II SUPERNOVAE , 2014, 1403.7091.

[90]  S. Smartt,et al.  The first month of evolution of the slow-rising Type IIP SN 2013ej in M74 , 2013, 1309.4269.

[91]  A.Goobar,et al.  Constraints on the origin of the first light from SN2014J , 2014, 1410.1363.

[92]  R. Foley,et al.  Photometric and spectroscopic properties of Type II-P supernovae , 2014, 1404.0378.

[93]  P. McCarthy,et al.  Analysis of blueshifted emission peaks in Type II supernovae , 2014, 1404.0581.

[94]  S. Gezari,et al.  TOWARD CHARACTERIZATION OF THE TYPE IIP SUPERNOVA PROGENITOR POPULATION: A STATISTICAL SAMPLE OF LIGHT CURVES FROM Pan-STARRS1 , 2014, 1404.2004.

[95]  P. McCarthy,et al.  Hα SPECTRAL DIVERSITY OF TYPE II SUPERNOVAE: CORRELATIONS WITH PHOTOMETRIC PROPERTIES , 2014, 1403.7089.

[96]  L. Ho,et al.  THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G): STELLAR MASSES, SIZES, AND RADIAL PROFILES FOR 2352 NEARBY GALAXIES , 2015, 1505.03534.

[97]  G. Pignata,et al.  The rise-time of Type II supernovae , 2015, 1505.02988.

[98]  Las Cumbres Observatory Global Telescope Network,et al.  Supernova 2013by: a Type IIL supernova with a IIP-like light-curve drop , 2015, 1501.06491.

[99]  M. Radovich,et al.  Supernova rates from the SUDARE VST-Omegacam search. I , 2015, 1509.04496.

[100]  Andrew Becker,et al.  HOTPANTS: High Order Transform of PSF ANd Template Subtraction , 2015 .

[101]  M. Sullivan,et al.  TYPE II SUPERNOVA ENERGETICS AND COMPARISON OF LIGHT CURVES TO SHOCK-COOLING MODELS , 2015, 1512.00733.

[102]  M. Sullivan,et al.  PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects , 2014, 1411.0299.

[103]  J. Pepper,et al.  CONSTRAINTS ON THE ORIGIN OF THE FIRST LIGHT FROM SN 2014J , 2015 .

[104]  Adam G. Riess,et al.  THE RATE OF CORE COLLAPSE SUPERNOVAE TO REDSHIFT 2.5 FROM THE CANDELS AND CLASH SUPERNOVA SURVEYS , 2015, 1509.06574.

[105]  Brian D. Bue,et al.  A strong ultraviolet pulse from a newborn type Ia supernova , 2015, Nature.

[106]  M. L. Pumo,et al.  SN 2013ab : A normal type IIP supernova in NGC 5669 , 2015, 1504.00838.

[107]  Mansi M. Kasliwal,et al.  PTF11iqb: cool supergiant mass-loss that bridges the gap between Type IIn and normal supernovae , 2015, 1501.02820.

[108]  M. Sullivan,et al.  FLASH SPECTROSCOPY: EMISSION LINES FROM THE IONIZED CIRCUMSTELLAR MATERIAL AROUND <10-DAY-OLD TYPE II SUPERNOVAE , 2015, 1512.00846.

[109]  K. Maguire,et al.  The Progenitor and Early Evolution of the Type IIb SN 2016gkg , 2016, 1611.00419.

[110]  G. Williger,et al.  UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE , 2015, 1511.08402.

[111]  A. Gal-yam,et al.  UNSUPERVISED CLUSTERING OF TYPE II SUPERNOVA LIGHT CURVES , 2016, 1602.01446.

[112]  R. Kotak,et al.  Supernova 2013fc in a circumnuclear ring of a luminous infrared galaxy: The big brother of SN 1998S , 2015, 1509.05389.

[113]  J. Prieto,et al.  Type II supernovae as probes of environment metallicity: observations of host H II regions , 2016, 1602.00011.

[114]  M. Phillips,et al.  SPIRITS 15c and SPIRITS 14buu: Two Obscured Supernovae in the Nearby Star-forming Galaxy IC 2163 , 2016, 1609.04444.

[115]  M. L. Pumo,et al.  OPTICAL AND ULTRAVIOLET OBSERVATIONS OF THE VERY YOUNG TYPE IIP SN 2014cx IN NGC 337 , 2016, 1609.02333.

[116]  Armin Rest,et al.  Constraints on the Progenitor of SN 2016gkg from Its Shock-cooling Light Curve , 2016, 1611.06451.

[117]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[118]  Davis,et al.  The diversity of Type II supernova versus the similarity in their progenitors , 2016, 1603.08953.

[119]  Warren R. Brown,et al.  SN 2012cg: EVIDENCE FOR INTERACTION BETWEEN A NORMAL SN Ia AND A NON-DEGENERATE BINARY COMPANION , 2015, 1507.07261.

[120]  E. Waxman,et al.  UV/Optical Emission from the Expanding Envelopes of Type II Supernovae , 2016, 1607.03700.

[121]  M. Stritzinger,et al.  Type II Supernova Spectral Diversity. II. Spectroscopic and Photometric Correlations , 2017, 1709.02799.

[122]  William H. Lee,et al.  Confined dense circumstellar material surrounding a regular type II supernova , 2017, Nature Physics.

[123]  K. Maguire,et al.  LSQ14efd: observations of the cooling of a shock break-out event in a type Ic Supernova , 2017, 1707.04644.

[124]  P. Brown,et al.  Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor , 2017, Proceedings of the International Astronomical Union.

[125]  I. Arcavi,et al.  Numerically Modeling the First Peak of the Type IIb SN 2016gkg , 2017, 1703.00913.

[126]  A. Corsi,et al.  An Empirical Limit on the Kilonova Rate from the DLT40 One Day Cadence Supernova Survey , 2017, 1710.05864.

[127]  Astrophysics,et al.  The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0 , 2017, 1706.07060.

[128]  Saurabh W. Jha,et al.  The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck , 2017, 1710.05854.

[129]  Carnegie,et al.  Early Observations of the Type Ia Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing , 2017, 1708.07124.

[130]  A. Gal-yam,et al.  Exploring the Efficacy and Limitations of Shock-cooling Models: New Analysis of Type II Supernovae Observed by the Kepler Mission , 2016, 1612.02805.

[131]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.