Spectrum estimation, notch filters, and MUSIC

A novel extension of the Multiple Signal Classification (MUSIC) algorithm for the frequency estimation problem is proposed in this work. It is shown that the MUSIC algorithm is a data-dependent optimum notch filter design technique. When the input data are passed through this optimum notch filter, the signal-to-noise ratio (SNR) of the output is minimized. The zeros of the optimum notch filter are then used to estimate the frequencies. In the classical MUSIC algorithm, this optimization is carried out over the set of all finite impulse response (FIR) filters having a fixed order. The framework of this paper allows the use of rational notch filters. The fact that the rational filters have sharper spectral characteristics is used to obtain improved estimates, particularly at low SNR. Some interesting properties of the proposed algorithm are derived, and further perspectives on the implementation aspects are provided. The analytical predictions are substantiated using numerical simulation results.

[1]  Petre Stoica,et al.  Performance analysis of an adaptive notch filter with constrained poles and zeros , 1988, IEEE Trans. Acoust. Speech Signal Process..

[2]  Arthur Jay Barabell,et al.  Improving the resolution performance of eigenstructure-based direction-finding algorithms , 1983, ICASSP.

[3]  Jean-Jacques Fuchs,et al.  Estimating the number of sinusoids in additive white noise , 1988, IEEE Trans. Acoust. Speech Signal Process..

[4]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[5]  Bhaskar D. Rao,et al.  Performance analysis of Root-Music , 1989, IEEE Trans. Acoust. Speech Signal Process..

[6]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[7]  S Van Huffel,et al.  Subspace-based MRS data quantitation of multiplets using prior knowledge. , 2004, Journal of magnetic resonance.

[8]  Tryphon T. Georgiou,et al.  Spectral estimation via selective harmonic amplification , 2001, IEEE Trans. Autom. Control..

[9]  Torsten Söderström,et al.  An evaluation of algorithms for computing the covariance function of a multivariable ARMA process , 2001, ECC.

[10]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[11]  Torsten Söderström,et al.  Statistical analysis of MUSIC and subspace rotation estimates of sinusoidal frequencies , 1991, IEEE Trans. Signal Process..

[12]  Tryphon T. Georgiou,et al.  A new approach to spectral estimation: a tunable high-resolution spectral estimator , 2000, IEEE Trans. Signal Process..

[13]  K. Arun,et al.  State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem , 1983 .

[14]  Olivier Besson,et al.  Two subspace-based methods for frequency estimation of sinusoidal signals with random amplitude , 1997 .

[15]  Ilan Ziskind,et al.  On unique localization of multiple sources by passive sensor arrays , 1989, IEEE Trans. Acoust. Speech Signal Process..

[16]  Tryphon T. Georgiou,et al.  Signal estimation via selective harmonic amplification: MUSIC, Redux , 2000, IEEE Trans. Signal Process..

[17]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[18]  Petre Stoica,et al.  Introduction to spectral analysis , 1997 .

[19]  Petre Stoica,et al.  Forward-only and forward-backward sample covariances - A comparative study , 1999, Signal Process..

[20]  Jeng-Kuang Hwang,et al.  A combined detection-estimation algorithm for the harmonic-retrieval problem , 1993, Signal Process..

[21]  Peter Händel,et al.  Tracking analysis of an adaptive notch filter with constrained poles and zeros , 1994, IEEE Trans. Signal Process..

[22]  Björn E. Ottersten,et al.  Further results and insights on subspace based sinusoidal frequency estimation , 2001, IEEE Trans. Signal Process..

[23]  Olivier Besson,et al.  Analysis of MUSIC and ESPRIT frequency estimates for sinusoidal signals with lowpass envelopes , 1996, IEEE Trans. Signal Process..

[24]  B. Hofmann-Wellenhof,et al.  Introduction to spectral analysis , 1986 .

[25]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[26]  P. Stoica,et al.  Convergence analysis of an adaptive pseudolinear-regression notch filtering algorithm , 1991 .

[27]  Georges Bienvenu Influence of the spatial coherence of the background noise on high resolution passive methods , 1979, ICASSP.

[28]  Lang Tong,et al.  A new approach to blind identification and equalization of multipath channels , 1991, [1991] Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers.

[29]  Arye Nehorai A minimal parameter adaptive notch filter with constrained poles and zeros , 1985, IEEE Trans. Acoust. Speech Signal Process..

[30]  Petre Stoica,et al.  Markov-based eigenanalysis method for frequency estimation , 1994, IEEE Trans. Signal Process..

[31]  Petre Stoica,et al.  Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements , 1989, IEEE Trans. Acoust. Speech Signal Process..

[32]  Petre Stoica,et al.  Estimation of the parameters of a random amplitude sinusoid by correlation fitting , 1996, IEEE Trans. Signal Process..