Development of high-performance Low-V BCC alloy for hydrogen storage by suction casting

[1]  B. Goltsman,et al.  Review on modern ways of insulation of reservoirs for liquid hydrogen storage , 2022, International Journal of Hydrogen Energy.

[2]  C. Fischer,et al.  Comparison of tensile properties of X60 pipeline steel tested in high pressure gaseous hydrogen using tubular and conventional specimen , 2022, International Journal of Hydrogen Energy.

[3]  Ruirun Chen,et al.  Effect of Heat Treatment on Microstructure and Thermal Stability of Ti19hf4v40mn35cr2 Hydrogen Storage Alloy , 2022, SSRN Electronic Journal.

[4]  Q. Chen,et al.  Ce-Doped TiZrCrMn Alloys for Enhanced Hydrogen Storage , 2022, Energy & Fuels.

[5]  Shumao Wang,et al.  Effect of Fe and Al on hydrogen storage properties of 75 V-Ti-Cr alloys , 2021 .

[6]  C. Qingjun,et al.  Mechanism and microstructural evolution of TiCrVFe hydrogen storage alloys upon de-/hydrogenation , 2021 .

[7]  Z. Śniadecki,et al.  Influence of carbon catalysts on the improvement of hydrogen storage properties in a body-centered cubic solid solution alloy , 2021 .

[8]  N. Ding,et al.  Superior reversible hydrogen storage capacity of V-based solid solution alloy above atmospheric pressure with yttrium substitution , 2021 .

[9]  C. Wang,et al.  Coupling of nanoconfinement with metallic catalysis in supported NaAlH4 for low-temperature hydrogen storage , 2021 .

[10]  Kefeng Wang,et al.  Graphene-induced growth of N-doped niobium pentaoxide nanorods with high catalytic activity for hydrogen storage in MgH2 , 2021 .

[11]  W. Ding,et al.  MOFs derived Ni nanoparticles dispersed on monolayer MXene functional carrier: an effective double transition metal-based catalyst to improve hydrogen storage properties of MgH2 , 2020 .

[12]  Jinliang Wang,et al.  Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate , 2020 .

[13]  V. Nassif,et al.  Hydrogen storage properties of the refractory Ti–V–Zr–Nb–Ta multi-principal element alloy , 2020, Journal of Alloys and Compounds.

[14]  Gao‐Ren Li,et al.  Highly dispersed ultrafine Ni particles embedded into MOF-74 arrays by partial carbonization for highly efficient hydrogen evolution , 2020 .

[15]  M. Balcerzak Hydrogenation properties of nanocrystalline Ti V Mn body-centered-cubic alloys , 2020 .

[16]  Xingguo Li,et al.  Hydrogen storage performances, kinetics and microstructure of Ti1.02Cr1.0Fe0.7-xMn0.3Alx alloy by Al substituting for Fe , 2020 .

[17]  Yuan Yuan,et al.  Study on the hydrogen storage properties of a TiZrNbTa high entropy alloy , 2020 .

[18]  D. Book,et al.  Development of a high-pressure Ti-Mn based hydrogen storage alloy for hydrogen compression , 2019, Renewable Energy.

[19]  M. Yan,et al.  Effects of nano-composites (FeB, FeB/CNTs) on hydrogen storage properties of MgH2 , 2019, Journal of Power Sources.

[20]  P. Liu,et al.  Synergistic catalytic effects of the Ni and V nanoparticles on the hydrogen storage properties of Mg-Ni-V nanocomposite , 2018, Chemical Engineering Journal.

[21]  N. S. Mustafa,et al.  The hydrogen storage properties and reaction mechanism of the NaAlH4 + Ca(BH4)2 composite system , 2018, International Journal of Hydrogen Energy.

[22]  Seemita Banerjee,et al.  Thermodynamics, kinetics and microstructural evolution of Ti0.43Zr0.07Cr0.25V0.25 alloy upon hydrogenation , 2017 .

[23]  Jian-qiu Deng,et al.  Hydrogen storage properties and thermal stability of V35Ti20Cr45 alloy by heat treatment , 2014 .

[24]  S. Bharadwaj,et al.  Hydrogen storage properties of Ti2−xCrVMx (M = Fe, Co, Ni) alloys , 2013 .

[25]  C. Dong,et al.  Microstructure and storage properties of low V-containing Ti–Cr–V hydrogen storage alloys prepared by arc melting and suction casting , 2013, Rare Metals.

[26]  A. Züttel,et al.  Hydrogen storage properties of Mg[BH4]2 , 2008 .

[27]  J. Tarascon,et al.  Improvement of hydrogen storage properties of the AB2 Laves phase alloys for automotive application , 2008 .

[28]  K. Wu,et al.  Cyclic hydrogen absorption–desorption characteristics of TiCrV and Ti0.8Cr1.2V alloys , 2007 .

[29]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[30]  Choong-Nyeon Park,et al.  Effects of desorption temperature and substitution of Fe for Cr on the hydrogen storage properties o , 2007 .

[31]  M. Hirscher,et al.  Metal hydride materials for solid hydrogen storage: a review , 2007 .

[32]  A. Züttel,et al.  Complex hydrides for hydrogen storage. , 2007, Chemical reviews.

[33]  E. Akiba,et al.  Crystal structures of novel La–Mg–Ni hydrogen absorbing alloys , 2006 .

[34]  K. Kubo,et al.  Improvement of cyclic durability of BCC structured Ti–Cr–V alloys , 2005 .

[35]  H. Fujii,et al.  Mechanism of Novel Reaction from LiNH2 and LiH to Li2NH and H2 as a Promising Hydrogen Storage System. , 2004 .

[36]  Masuo Okada,et al.  Ti-V-Cr b.c.c. alloys with high protium content , 2002 .

[37]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[38]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[39]  T. Sakai,et al.  Hydrogen storage alloys rapidly solidified by the melt-spinning method and their characteristics as metal hydride electrodes , 1993 .

[40]  D. Ruthven,et al.  Numerical simulation of a kinetically controlled pressure swing adsorption bulk separation process based on a diffusion model , 1991 .

[41]  D. Gruen,et al.  LaNi5-xAlx is a versatile alloy system for metal hydride applications , 1977, Nature.

[42]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .