Identification of nonlinear block-oriented systems by the recursive kernel estimate
暂无分享,去创建一个
[1] Adam Krzyżak,et al. Identification of non-linear systems by recursive kernel regression estimates , 1993 .
[2] Adam Krzyzak,et al. Global convergence of the recursive kernel regression estimates with applications in classification and nonlinear system estimation , 1992, IEEE Trans. Inf. Theory.
[3] M. Pawlak. On the series expansion approach to the identification of Hammerstein systems , 1991 .
[4] L. Devroye. Exponential Inequalities in Nonparametric Estimation , 1991 .
[5] Adam Krzyzak,et al. On estimation of a class of nonlinear systems by the kernel regression estimate , 1990, IEEE Trans. Inf. Theory.
[6] Wolfgang Härdle,et al. Nonparametric Curve Estimation from Time Series , 1989 .
[7] A. Krzyżak. Identification of discrete Hammerstein systems by the Fourier series regression estimate , 1989 .
[8] M. C. Jones,et al. Spline Smoothing and Nonparametric Regression. , 1989 .
[9] C. Hung-yuan,et al. Analysis and parameter estimation of nonlinear systems with Hammerstein model using Taylor series approach , 1988 .
[10] Stephen P. Banks,et al. Mathematical theories of nonlinear systems , 1988 .
[11] Petre Stoica,et al. Decentralized Control , 2018, The Control Systems Handbook.
[12] L. Devroye,et al. Nonparametric density estimation : the L[1] view , 1987 .
[13] W. Greblicki,et al. Hammerstein system identification by non-parametric regression estimation , 1987 .
[14] Adam Krzyzak,et al. The rates of convergence of kernel regression estimates and classification rules , 1986, IEEE Trans. Inf. Theory.
[15] W. Greblicki,et al. Identification of discrete Hammerstein systems using kernel regression estimates , 1986 .
[16] L. Devroye,et al. Nonparametric Density Estimation: The L 1 View. , 1985 .
[17] Steven C. Bass,et al. Adaptive noise cancellation for a class of nonlinear, dynamic reference channels , 1985 .
[18] A. Krzyżak,et al. Distribution-Free Pointwise Consistency of Kernel Regression Estimate , 1984 .
[19] Adam Krzyzak,et al. Almost everywhere convergence of a recursive regression function estimate and classification , 1984, IEEE Trans. Inf. Theory.
[20] Baxter F. Womack,et al. Discrete Time Adaptive Control of Linear Dynamic Systems with a Two-Segment Piecewise-Linear Asymmetric Nonlinearity , 1983, 1983 American Control Conference.
[21] Prakasa Rao. Nonparametric functional estimation , 1983 .
[22] Gary L. Wise,et al. On the design of nonlinear discrete-time predictors , 1982, IEEE Trans. Inf. Theory.
[23] Stamatis Cambanis,et al. Consistent estimation of continuous-time signals from nonlinear transformations of noisy samples , 1981, IEEE Trans. Inf. Theory.
[24] Stephen A. Billings,et al. Identi cation of nonlinear systems-A survey , 1980 .
[25] L. Devroye,et al. On the L1 convergence of kernel estimators of regression functions with applications in discrimination , 1980 .
[26] Stamatis Cambanis,et al. Signal identification after noisy nonlinear transformations , 1980, IEEE Trans. Inf. Theory.
[27] A. Krzyżak,et al. Non-parametric identification of a memoryless system with a cascade structure , 1979 .
[28] S. Billings,et al. Non-linear system identification using the Hammerstein model , 1979 .
[29] H. Teicher,et al. Probability theory: Independence, interchangeability, martingales , 1978 .
[30] L. Devroye. The uniform convergence of the nadaraya‐watson regression function estimate , 1978 .
[31] P. Gallman. A comparison of two Hammerstein model identification algorithms , 1976 .
[32] P. Gallman,et al. An iterative method for the identification of nonlinear systems using a Uryson model , 1975 .
[33] R. Luus,et al. A noniterative method for identification using Hammerstein model , 1971 .
[34] K. Narendra,et al. An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .
[35] Thomas M. Cover,et al. Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition , 1965, IEEE Trans. Electron. Comput..
[36] N. Wiener,et al. Nonlinear Problems in Random Theory , 1964 .