Fluid–structure interaction in lower airways of CT‐based lung geometries

In this study, the deformability of airway walls is taken into account to study airflow patterns and airway wall stresses in the first generations of lower airways in a real lung geometry. The lung geometry is based on CT scans that are obtained from in vivo experiments on humans. A partitioned fluid–structure interaction (FSI) approach, realized within a parallel in-house finite element code, is employed. It is designed for the robust and efficient simulation of the interaction of transient incompressible Newtonian flows and (geometrically) non-linear airway wall behavior. Arbitrary Lagrangian–Eulerian-based stabilized tetrahedral finite elements are used for the fluid and Lagrangian-based 7-parametric mixed/hybrid shell elements are used for the airway walls using unstructured meshes due to the complexity of the geometry. Airflow patterns as well as airway wall stresses in the bronchial tree are studied for a number of different scenarios. Thereby, both models for healthy and diseased lungs are taken into account and both normal breathing and mechanical ventilation scenarios are studied. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  W. Wall,et al.  A Solution for the Incompressibility Dilemma in Partitioned Fluid–Structure Interaction with Pure Dirichlet Fluid Domains , 2006 .

[2]  D E Olson,et al.  Models of the human bronchial tree. , 1971, Journal of applied physiology.

[3]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[4]  K T Morgan,et al.  Application of computational fluid dynamics to regional dosimetry of inhaled chemicals in the upper respiratory tract of the rat. , 1993, Toxicology and applied pharmacology.

[5]  Clement Kleinstreuer,et al.  Cyclic micron-size particle inhalation and deposition in a triple bifurcation lung airway model , 2002 .

[6]  E. Ramm,et al.  Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .

[7]  R D Kamm,et al.  Some features of oscillatory flow in a model bifurcation. , 1989, Journal of applied physiology.

[8]  Clement Kleinstreuer,et al.  Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields , 2001, Journal of Fluid Mechanics.

[9]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[10]  Hans-Peter Meinzer,et al.  Robuste Analyse von Gefäßstrukturen auf Basis einer 3D-Skelettierung , 2003, Bildverarbeitung für die Medizin.

[11]  Carlos A. Felippa,et al.  A unified formulation of small-strain corotational finite elements: I. Theory , 2005 .

[12]  Wolfgang A. Wall,et al.  Parallel multilevel solution of nonlinear shell structures , 2005 .

[13]  Wolfgang A. Wall Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen , 1999 .

[14]  M. Heil,et al.  Three-dimensional instabilities of liquid-lined elastic tubes : A thin-film fluid-structure interaction model , 2005 .

[15]  Serge Piperno,et al.  Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations , 1997 .

[16]  Clement Kleinstreuer,et al.  Comparison of micro- and nano-size particle depositions in a human upper airway model , 2005 .

[17]  Ekkehard Ramm,et al.  On the geometric conservation law in transient flow calculations on deforming domains , 2006 .

[18]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[19]  Baruch B. Lieber,et al.  Oscillatory Flow in a Symmetric Bifurcation Airway Model , 1998, Annals of Biomedical Engineering.

[20]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[21]  H. Matthies,et al.  Partitioned Strong Coupling Algorithms for Fluid-Structure-Interaction , 2003 .

[22]  E. Ramm,et al.  Shear deformable shell elements for large strains and rotations , 1997 .

[23]  Thomas Heistracher,et al.  Air Flow and Particle Deposition Patterns in Bronchial Airway Bifurcations: The Effect of Different CFD Models and Bifurcation Geometries , 1996 .

[24]  D. Peric,et al.  A computational framework for fluid–structure interaction: Finite element formulation and applications , 2006 .

[25]  Y Liu,et al.  Modeling the bifurcating flow in a human lung airway. , 2002, Journal of biomechanics.

[26]  A. Hazel,et al.  Three-dimensional airway reopening: the steady propagation of a semi-infinite bubble into a buckled elastic tube , 2003, Journal of Fluid Mechanics.

[27]  C. S. Kim,et al.  Deposition of Inhaled Particles in Bifurcating Airway Models: I. Inspiratory Deposition , 1989 .

[28]  Pascal Frey,et al.  Fluid-structure interaction in blood flows on geometries based on medical imaging , 2005 .

[29]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[30]  Y C Fung,et al.  Residual strains in porcine and canine trachea. , 1991, Journal of biomechanics.

[31]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[32]  Ekkehard Ramm,et al.  A three-level finite element method for the instationary incompressible Navier?Stokes equations , 2004 .

[33]  D. Dinkler,et al.  A monolithic approach to fluid–structure interaction using space–time finite elements , 2004 .

[34]  R. M. C. So,et al.  The effect of inlet velocity profile on the bifurcation COPD airway flow , 2006, Comput. Biol. Medicine.

[35]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[36]  Y Liu,et al.  Modeling the bifurcating flow in an asymmetric human lung airway. , 2003, Journal of biomechanics.

[37]  Tayfun E. Tezduyar,et al.  Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces , 2004 .

[38]  G. Yu,et al.  Computer Simulation of the Flow Field and Particle Deposition by Diffusion in a 3-D Human Airway Bifurcation , 1996 .

[39]  B. Asgharian,et al.  A MONTE CARLO CALCULATION OF THE DEPOSITION EFFICIENCY OF INHALED PARTICLES IN LOWER AIRWAYS , 1994 .

[40]  John N. Shadid,et al.  Official Aztec user''s guide: version 2.1 , 1999 .

[41]  Ananth V. Annapragada,et al.  Computational Fluid Dynamics Simulation of Airflow and Aerosol Deposition in Human Lungs , 2004, Annals of Biomedical Engineering.

[42]  Arne Erik Holdø,et al.  Numerical simulation of respiratory flow patterns within human lung , 2002, Respiratory Physiology & Neurobiology.

[43]  E. Ramm,et al.  Models and finite elements for thin-walled structures , 2004 .

[44]  Charbel Farhat,et al.  Partitioned analysis of coupled mechanical systems , 2001 .

[45]  E. Weibel Morphometry of the Human Lung , 1965, Springer Berlin Heidelberg.

[46]  Wolfgang A. Wall,et al.  An Approach for Parallel Fluid-Structure Interaction on Unstructured Meshes , 2006, PVM/MPI.

[47]  Marco Nolden,et al.  The Medical Imaging Interaction Toolkit , 2005, Medical Image Anal..

[48]  Roger D Kamm,et al.  Zero-stress state of intra- and extraparenchymal airways from human, pig, rabbit, and sheep lung. , 2002, Journal of applied physiology.

[49]  G. Yu,et al.  Fluid Flow and Particle Diffusion in the Human Upper Respiratory System , 1998 .

[50]  M. Heil,et al.  Airway closure: occluding liquid bridges in strongly buckled elastic tubes. , 1999, Journal of biomechanical engineering.

[51]  Ronald M. Summers,et al.  Tracheal and central bronchial aerodynamics using virtual bronchoscopy , 2001, SPIE Medical Imaging.

[52]  Clement Kleinstreuer,et al.  Transient airflow structures and particle transport in a sequentially branching lung airway model , 2002 .

[53]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[54]  Ekkehard Ramm,et al.  Large eddy simulation of turbulent incompressible flows by a three‐level finite element method , 2005 .

[55]  Kenneth R. Lutchen,et al.  An Anatomically Based Hybrid Computational Model of the Human Lung and its Application to Low Frequency Oscillatory Mechanics , 2006, Annals of Biomedical Engineering.

[56]  Clement Kleinstreuer,et al.  Flow structures and particle deposition patterns in double-bifurcation airway models. Part 2. Aerosol transport and deposition , 2001, Journal of Fluid Mechanics.

[57]  Imre Balásházy,et al.  Deposition of aerosols in asymmetric airway bifurcations , 1995 .

[58]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[59]  M. Heil,et al.  Airway closure: surface-tension-driven non-axisymmetric instabilities of liquid-lined elastic rings , 2002, Journal of Fluid Mechanics.

[60]  Charbel Farhat,et al.  Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity , 2006 .