3D non-LTE corrections for Li abundance and 6 Li/ 7 Li isotopic ratio in solar-type stars. I. Application to HD 207129 and HD 95456

Convective motions in solar-type stellar atmospheres induce Doppler shifts that affect the strengths and shapes of spectral absorption lines and create slightly asymmetric line profiles. 1D LTE studies of elemental abundances are not able to reproduce this phenomenon, which becomes particularly important when modeling the impact of isotopic fine structure, like the subtle depression created by the 6Li isotope on the red wing of the Li I resonance doublet line. The purpose of this work is to provide corrections for the lithium abundance, A(Li), and the 6Li/7Li ratio that can easily be applied to correct 1D LTE lithium abundances in G and F dwarf stars of approximately solar mass and metallicity for 3D and non-LTE (NLTE) effects. The corrections for A(Li) and 6Li/7Li are computed using grids of 3D NLTE and 1D LTE synthetic lithium line profiles, generated from 3D hydro-dynamical CO5BOLD and 1D hydrostatic model atmospheres, respectively. The 3D NLTE corrections are then approximated by analytical expressions as a function of the stellar parameters. These are applied to adjust the 1D LTE isotopic lithium abundances in two solar-type stars, HD 207129 and HD 95456. The derived 3D NLTE corrections range between -0.01 and +0.11 dex for A(Li), and between -4.9 and -0.4% for the 6Li/7Li ratio, depending on the adopted stellar parameters. In the case of the 6Li/7Li ratio, our corrections are always negative, showing that 1D LTE analysis can significantly overestimate (up to 4.9 percentage points) the presence of 6Li in the atmospheres of solar-like dwarf stars. These results emphasize the importance of reliable 3D model atmospheres combined with NLTE line formation for deriving precise isotopic lithium abundances. Although 3D NLTE spectral synthesis implies an extensive computational effort, the results can be made accessible with parametric tools like the ones presented in this work.

[1]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[2]  T. Bensby,et al.  Exploring the production and depletion of lithium in the Milky Way stellar disk , 2018, Astronomy & Astrophysics.

[3]  J. Jenkins,et al.  A detailed study of Lithium in 107 CHEPS dwarf stars , 2017, 1710.06630.

[4]  David S. Peterson,et al.  THE UNIVERSITY OF TEXAS AT AUSTIN , 2018 .

[5]  K. Strassmeier,et al.  PEPSI deep spectra. I. The Sun-as-a-star , 2017, 1712.06960.

[6]  E. Caffau,et al.  Lithium abundance and 6 Li/ 7 Li ratio in the active giant HD 123351. I. A comparative analysis of 3D and 1D NLTE line-profile fits , 2017, 1704.06460.

[7]  V. Adibekyan,et al.  CNO behaviour in planet-harbouring stars. II. Carbon abundances in stars with and without planets using the CH band , 2016, 1611.10092.

[8]  L. Dutra-Ferreira,et al.  Consistent metallicity scale for cool dwarfs and giants. A benchmark test using the Hyades , 2015, 1509.07725.

[9]  E. Caffau,et al.  Lithium spectral line formation in stellar atmospheres. The impact of convection and NLTE effects , 2015, 1512.08999.

[10]  Tucson,et al.  The photospheric solar oxygen project: IV. 3D-NLTE investigation of the 777 nm triplet lines , 2015, 1508.03487.

[11]  V. Adibekyan,et al.  Oxygen abundances in G- and F-type stars from HARPS , 2015, 1501.05805.

[12]  M. Tsantaki,et al.  Li abundances in F stars: planets, rotation, and Galactic evolution , 2014, 1412.4618.

[13]  W. Chaplin,et al.  Determining stellar macroturbulence using asteroseismic rotational velocities from Kepler , 2014, 1408.3988.

[14]  I. Boisse,et al.  On the long-term correlation between the flux in the Ca ii H & K and Hα lines for FGK stars , 2013, 1311.6642.

[15]  M. Asplund,et al.  The lithium isotopic ratio in very metal-poor stars , 2013, 1305.6564.

[16]  M. Tsantaki,et al.  Deriving precise parameters for cool solar-type stars Optimizing the iron line list ?;??;??? , 2013, 1304.6639.

[17]  B. Fields,et al.  Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud , 2012, Nature.

[18]  V. Adibekyan,et al.  Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program - Galactic stellar populations and planets , 2012, 1207.2388.

[19]  Judith G. Cohen,et al.  The remarkable solar twin HIP 56948: a prime target in the quest for other Earths , 2012, 1204.2766.

[20]  N. Prantzos Production and evolution of Li, Be, and B isotopes in the Galaxy , 2012, 1203.5662.

[21]  W. Schaffenberger,et al.  Simulations of stellar convection with CO5BOLD , 2011, J. Comput. Phys..

[22]  Bernd Freytag,et al.  Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.

[23]  P. Bonifacio,et al.  Convection and 6Li in the atmospheres of metal-poor halo stars , 2009, Proceedings of the International Astronomical Union.

[24]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[25]  B. Sato,et al.  THE NEW DETECTIONS OF 7Li/6Li ISOTOPIC RATIO IN THE INTERSTELLAR MEDIA , 2009 .

[26]  T. Beers,et al.  The metal–poor end of the Spite plateau , 2009, Proceedings of the International Astronomical Union.

[27]  M. Asplund,et al.  Departures from LTE for neutral Li in late-type stars , 2009, 0906.0899.

[28]  K. Cunha,et al.  MEASUREMENTS OF THE ISOTOPIC RATIO 6Li/7Li IN STARS WITH PLANETS , 2009, 0903.4873.

[29]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[30]  D. Queloz,et al.  Spectroscopic parameters for 451 stars in the HARPS GTO planet search program - Stellar [Fe/H] and the frequency of exo-Neptunes , 2008, 0805.4826.

[31]  P. Bonifacio,et al.  The photospheric solar oxygen project. I. Abundance analysis of atomic lines and influence of atmosp , 2008, 0805.4398.

[32]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[33]  P. Petitjean,et al.  Line shift, line asymmetry, and the 6Li/7Li isotopic ratio determination , 2007, 0708.3819.

[34]  C. Charbonnel,et al.  Hydrodynamical stellar models including rotation, internal gravity waves, and atomic diffusion - I. Formalism and tests on Pop I dwarfs , 2005 .

[35]  S. Kawanomoto,et al.  Lithium Abundances of F-, G-, and K-Type Stars: Profile-Fitting Analysis of the Li I 6708 Doublet , 2005 .

[36]  Jean-Luis Lizon,et al.  Setting New Standards with HARPS , 2003 .

[37]  J. Ge,et al.  A Search for 6Li in Lithium-Poor Stars with Planets , 2003, astro-ph/0310698.

[38]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[39]  R. Rebolo,et al.  New measurement of the 6 Li= 7 Li isotopic ratio in the extra-solar planet host star HD 82943 and line blending in the Li 6708 Å region ? , 2003, astro-ph/0304358.

[40]  Bernd Freytag,et al.  Spots on the surface of Betelgeuse -- Results from new 3D stellar convection models , 2002 .

[41]  K. Covey,et al.  A search for 6Li in stars with planets , 2002, astro-ph/0205268.

[42]  R. Rebolo,et al.  Planet accretion and the abundances of lithium isotopes , 2002, astro-ph/0203102.

[43]  K. Covey,et al.  A search for 6 Li in stars with planets , 2002 .

[44]  R. Rebolo,et al.  Evidence for planet engulfment by the star HD82943 , 2001, Nature.

[45]  S. Saar,et al.  On Stellar Activity Enhancement Due to Interactions with Extrasolar Giant Planets , 2000, The Astrophysical journal.

[46]  M. Pinsonneault MIXING IN STARS , 1997 .

[47]  R. Kurucz The Primordial Lithium Abundance , 1995 .

[48]  N. Prantzos,et al.  Production and evolution of LiBeB isotopes in the galaxy , 1993 .

[49]  B. Fields,et al.  Primordial nucleosynthesis and the abundances of beryllium and boron , 1992, astro-ph/9206002.

[50]  R. Kurucz ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. , 1993 .

[51]  C. Proffitt,et al.  Pre-main-sequence depletion of Li-6 and Li-7 , 1989 .

[52]  D. F. Gray,et al.  The Observation and Analysis of Stellar Photospheres , 2021 .

[53]  R. Reza,et al.  The solar lithium abundance , 1975 .