A prototype personal aerosol sampler based on electrostatic precipitation and electrowetting-on-dielectric actuation of droplets

This is an Open Access article, distributed under the terms of the Open Government Licence. http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/ Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved. The version of record (T. G. Foat, et al, 'A prototype personal aerosol sampler based on electrostatic precipitation and electrowetting-on-dielectric actuation of droplets', Journal of Aerosol Science, Vol. 95, pp. 43-53, May 2016) is available online at doi: https://doi.org/10.1016/j.jaerosci.2016.01.007.

[1]  P. Görner,et al.  Bioaerosol sampling by a personal rotating cup sampler CIP 10-M. , 2006, Journal of environmental monitoring : JEM.

[2]  Jean Cross,et al.  Electrostatics, Principles, Problems and Applications , 1987 .

[3]  C. Sioutas,et al.  High collection efficiency electrostatic precipitator for in vitro cell exposure to concentrated ambient particulate matter (PM) , 2008 .

[4]  R. Oleschuk,et al.  Digital microfluidic platform for human plasma protein depletion. , 2014, Analytical chemistry.

[5]  Yves Fouillet,et al.  Macro to microfluidics system for biological environmental monitoring. , 2012, Biosensors & bioelectronics.

[6]  Carl Sunderman,et al.  A Handheld Electrostatic Precipitator for Sampling Airborne Particles and Nanoparticles , 2010 .

[7]  Xavier Simon,et al.  Laboratory study of selected personal inhalable aerosol samplers. , 2010, The Annals of occupational hygiene.

[8]  Laurids Siig Christensen,et al.  Detection of foot-and-mouth disease virus in the breath of infected cattle using a hand-held device to collect aerosols. , 2011, Journal of virological methods.

[9]  Jim He,et al.  Automated Digital Microfluidic Sample Preparation for Next-Generation DNA Sequencing , 2011, Journal of laboratory automation.

[10]  K. H. Kang,et al.  Shape Oscillation of a drop in ac electrowetting. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[11]  H. Rose,et al.  An introduction to electrostatic precipitation in theory and practice , 1956 .

[12]  Alfonso M. Gañán-Calvo,et al.  A novel pneumatic technique to generate steady capillary microjets , 1999 .

[13]  Rabah Boukherroub,et al.  Inhibiting protein biofouling using graphene oxide in droplet-based microfluidic microsystems. , 2012, Lab on a chip.

[14]  Lyle E. Yarnell,et al.  Automated digital microfluidic platform for magnetic-particle-based immunoassays with optimization by design of experiments. , 2013, Analytical chemistry.

[15]  T J Cieslak,et al.  Clinical recognition and management of patients exposed to biological warfare agents. , 1997, Clinics in laboratory medicine.

[16]  Yuejun Zhao,et al.  Microparticle sampling by electrowetting-actuated droplet sweeping. , 2006, Lab on a chip.

[17]  Ulf W. Gedde,et al.  Hydrophobicity Recovery of Polydimethylsiloxane after Exposure to Corona Discharges , 1998 .

[18]  F. Shen,et al.  Development of an Automated Electrostatic Sampler (AES) for Bioaerosol Detection , 2011 .

[19]  A. Wheeler,et al.  Digital microfluidics: an emerging sample preparation platform for mass spectrometry. , 2013, Analytical chemistry.

[20]  D. Sleeth,et al.  Performance study of personal inhalable aerosol samplers at ultra-low wind speeds. , 2012, The Annals of occupational hygiene.

[21]  K. H. Kang,et al.  Hydrodynamic flows in electrowetting. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[22]  P. Jahrling,et al.  Clinical recognition and management of patients exposed to biological warfare agents. , 1997, JAMA.

[23]  Joseph A Loo,et al.  Incubated protein reduction and digestion on an electrowetting-on-dielectric digital microfluidic chip for MALDI-MS. , 2010, Analytical chemistry.

[24]  Aaron R Wheeler,et al.  Pluronic additives: a solution to sticky problems in digital microfluidics. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[25]  A. Wheeler,et al.  A new angle on pluronic additives: advancing droplets and understanding in digital microfluidics. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[26]  G. Mainelis,et al.  Design and development of an electrostatic sampler for bioaerosols with high concentration rate , 2008 .

[27]  J. Roux,et al.  Investigation of a New Electrostatic Sampler for Concentrating Biological and Non-Biological Aerosol Particles , 2013 .

[28]  Richard B. Fair,et al.  Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform , 2004, SPIE Optics East.

[29]  James H. Vincent,et al.  Porous plastic foam filtration media: Penetration characteristics and applications in particle size-selective sampling , 1993 .

[30]  G. Mainelis,et al.  Performance of an Electrostatic Precipitator with Superhydrophobic Surface when Collecting Airborne Bacteria , 2010 .

[31]  Gediminas Mainelis,et al.  Collection of Airborne Microorganisms by Electrostatic Precipitation , 1999 .

[32]  An electrostatic precipitator , 1977 .

[33]  Paul S. Greenberg,et al.  Fundamental Study of a Miniaturized Disk-Type Electrostatic Aerosol Precipitator for a Personal Nanoparticle Sizer , 2008 .

[34]  J. Volckens,et al.  Oil Mist Concentration: A Comparison of Sampling Methods , 1999 .

[35]  T. Reponen,et al.  Collection of airborne microorganisms by a new electrostatic precipitator , 2002 .

[37]  J. Achard,et al.  Ionic wind generator derived from a liquid filled capillary pin. Application to particle capture , 2013 .

[38]  J. F. D. L. Mora Inertial Effects on Linear and Locally Linear Flows , 1985 .

[39]  C. Wright,et al.  Measurement of airborne foot-and-mouth disease virus: preliminary evaluation of two portable air sampling devices. , 2009, Veterinary journal.

[40]  E. Varughese,et al.  An integrated culture and real-time PCR method to assess viability of disinfectant treated Bacillus spores using robotics and the MPN quantification method. , 2007, Journal of microbiological methods.

[41]  Y. Coffinier,et al.  EWOD driven cleaning of bioparticles on hydrophobic and superhydrophobic surfaces. , 2011, Lab on a chip.

[42]  J. Vörös,et al.  Influence of polymer surface chemistry on frictional properties under protein-lubrication conditions: implications for hip-implant design , 2001 .