Fast Color Quantization Using Weighted Sort-Means Clustering

Color quantization is an important operation with numerous applications in graphics and image processing. Most quantization methods are essentially based on data clustering algorithms. However, despite its popularity as a general purpose clustering algorithm, K-means has not received much respect in the color quantization literature because of its high computational requirements and sensitivity to initialization. In this paper, a fast color quantization method based on K-means is presented. The method involves several modifications to the conventional (batch) K-means algorithm, including data reduction, sample weighting, and the use of the triangle inequality to speed up the nearest-neighbor search. Experiments on a diverse set of images demonstrate that, with the proposed modifications, K-means becomes very competitive with state-of-the-art color quantization methods in terms of both effectiveness and efficiency.

[1]  Jianhong Wu,et al.  Data clustering - theory, algorithms, and applications , 2007 .

[2]  Alan M. Frieze,et al.  Clustering Large Graphs via the Singular Value Decomposition , 2004, Machine Learning.

[3]  Zhigang Xiang,et al.  Color image quantization by minimizing the maximum intercluster distance , 1997, TOGS.

[4]  William Equitz,et al.  A new vector quantization clustering algorithm , 1989, IEEE Trans. Acoust. Speech Signal Process..

[5]  Surapong Auwatanamongkol,et al.  Color image quantization using distances between adjacent colors along the color axis with highest color variance , 2004, Pattern Recognit. Lett..

[6]  Ja-Chen Lin,et al.  RWM-cut for color image quantization , 1996, Comput. Graph..

[7]  W. Peizhuang Pattern Recognition with Fuzzy Objective Function Algorithms (James C. Bezdek) , 1983 .

[8]  Lale Akarun,et al.  A fuzzy algorithm for color quantization of images , 2002, Pattern Recognit..

[9]  Anthony H. Dekker,et al.  Kohonen neural networks for optimal colour quantization , 1994 .

[10]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[11]  Jun Kong,et al.  Texture classification using nonlinear color quantization: Application to histopathological image analysis , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[12]  Charles Elkan,et al.  Using the Triangle Inequality to Accelerate k-Means , 2003, ICML.

[13]  Gerald Schaefer,et al.  Fuzzy clustering for colour reduction in images , 2009, Telecommun. Syst..

[14]  Michael T. Orchard,et al.  Color quantization of images , 1991, IEEE Trans. Signal Process..

[15]  Bing-Hwang Su,et al.  Accelerated k-means clustering algorithm for colour image quantization , 2008 .

[16]  M. Emre Celebi,et al.  An Effective Color Quantization Method Based on the Competitive Learning Paradigm , 2009, IPCV.

[17]  John F. Kolen,et al.  Reducing the time complexity of the fuzzy c-means algorithm , 2002, IEEE Trans. Fuzzy Syst..

[18]  Jakub Marecek,et al.  Handbook of Approximation Algorithms and Metaheuristics , 2010, Comput. J..

[19]  Evripidis Bampis,et al.  Handbook of Approximation Algorithms and Metaheuristics , 2007 .

[20]  Charalambos Strouthopoulos,et al.  Adaptive color reduction , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[21]  Masayuki Okamoto,et al.  Color quantization using the fast K-means algorithm , 2000 .

[22]  Luiz Velho,et al.  Color image quantization by pairwise clustering , 1997, Proceedings X Brazilian Symposium on Computer Graphics and Image Processing.

[23]  Shyi-Chyi Cheng,et al.  Fusion of color edge detection and color quantization for color image watermarking using principal axes analysis , 2007, Pattern Recognit..

[24]  Sariel Har-Peled,et al.  Smaller Coresets for k-Median and k-Means Clustering , 2005, SCG.

[25]  Yu-Chen Hu,et al.  K-means-based color palette design scheme with the use of stable flags , 2007, J. Electronic Imaging.

[26]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[27]  Steven J. Phillips Acceleration of K-Means and Related Clustering Algorithms , 2002, ALENEX.

[28]  C.J.H. Mann,et al.  Handbook of Approximation: Algorithms and Metaheuristics , 2008 .

[29]  Daniel Thalmann,et al.  New Trends in Computer Graphics , 1988, Springer Berlin Heidelberg.

[30]  B. S. Manjunath,et al.  An efficient color representation for image retrieval , 2001, IEEE Trans. Image Process..

[31]  Xiaolin Wu,et al.  EFFICIENT STATISTICAL COMPUTATIONS FOR OPTIMAL COLOR QUANTIZATION , 1991 .

[32]  Michael Gervautz,et al.  A simple method for color quantization: octree quantization , 1990 .

[33]  Masayuki Okamoto,et al.  Color quantization using the fast K-means algorithm , 2000, Systems and Computers in Japan.

[34]  Gregory Joy,et al.  Color image quantization by agglomerative clustering , 1994, IEEE Computer Graphics and Applications.

[35]  Gregory Joy,et al.  Center-cut for color-image quantization , 2005, The Visual Computer.

[36]  Wen-Hsiang Tsai,et al.  Color image compression using quantization, thresholding, and edge detection techniques all based on the moment-preserving principle , 1998, Pattern Recognit. Lett..

[37]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Bunyarit Uyyanonvara,et al.  Novel fast color reduction algorithm for time-constrained applications , 2005, J. Vis. Commun. Image Represent..

[39]  Gaurav Sharma Digital Color Imaging Handbook , 2002 .

[40]  Paul S. Heckbert Color image quantization for frame buffer display , 1998 .

[41]  Joann M. Taylor,et al.  Digital Color Imaging Handbook , 2004 .

[42]  Jan P. Allebach,et al.  New approach to palette selection for color images , 1991, Electronic Imaging.

[43]  Zhou Bing,et al.  An adjustable algorithm for color quantization , 2004, Pattern Recognit. Lett..

[44]  Chip-Hong Chang,et al.  New adaptive color quantization method based on self-organizing maps , 2005, IEEE Transactions on Neural Networks.

[45]  Ronald S. Gentile,et al.  Quantization of color images based on uniform color spaces , 1990 .

[46]  Paul Scheunders,et al.  A comparison of clustering algorithms applied to color image quantization , 1997, Pattern Recognit. Lett..

[47]  Ruey-Feng Chang,et al.  A Fast Finite-State Algorithm for Generating RGB Palettes of Color Quantized Images , 2004, J. Inf. Sci. Eng..

[48]  B. S. Manjunath,et al.  Unsupervised Segmentation of Color-Texture Regions in Images and Video , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  E. Forgy,et al.  Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[50]  P. Prusinkiewicz,et al.  Variance‐based color image quantization for frame buffer display , 1990 .

[51]  Shyi-Chyi Cheng,et al.  A fast and novel technique for color quantization using reduction of color space dimensionality , 2001, Pattern Recognit. Lett..

[52]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[53]  Journal of the Optical Society of America , 1950, Nature.