Semi-dual Regularized Optimal Transport

Variational problems that involve Wasserstein distances and more generally optimal transport (OT) theory are playing an increasingly important role in data sciences. Such problems can be used to fo...

[1]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[2]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[3]  J. Lorenz,et al.  On the scaling of multidimensional matrices , 1989 .

[4]  Roberto Cominetti,et al.  Asymptotic analysis of the exponential penalty trajectory in linear programming , 1994, Math. Program..

[5]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[6]  Timothy M. Chan Optimal output-sensitive convex hull algorithms in two and three dimensions , 1996, Discret. Comput. Geom..

[7]  Franz Aurenhammer,et al.  Minkowski-Type Theorems and Least-Squares Clustering , 1998, Algorithmica.

[8]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[9]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[10]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[11]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[12]  Inderjit S. Dhillon,et al.  Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..

[13]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[14]  Daniel Ruiz,et al.  A Fast Algorithm for Matrix Balancing , 2013, Web Information Retrieval and Linear Algebra Algorithms.

[15]  Antonin Chambolle,et al.  The Discontinuity Set of Solutions of the TV Denoising Problem and Some Extensions , 2007, Multiscale Model. Simul..

[16]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[17]  Michael Werman,et al.  Fast and robust Earth Mover's Distances , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[18]  Giuseppe Savaré,et al.  The Wasserstein Gradient Flow of the Fisher Information and the Quantum Drift-diffusion Equation , 2009 .

[19]  Guillaume Carlier,et al.  Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..

[20]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[21]  Quentin Mérigot,et al.  A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.

[22]  M. V. D. Panne,et al.  Displacement Interpolation Using Lagrangian Mass Transport , 2011 .

[23]  Mathieu Desbrun,et al.  Blue noise through optimal transport , 2012, ACM Trans. Graph..

[24]  Carola-Bibiane Schönlieb,et al.  Regularized Regression and Density Estimation based on Optimal Transport , 2012 .

[25]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[26]  Jérémie Bigot,et al.  Consistent estimation of a population barycenter in the Wasserstein space , 2013 .

[27]  Christoph Schnörr,et al.  Object Segmentation by Shape Matching with Wasserstein Modes , 2013, EMMCVPR.

[28]  Christian L'eonard A survey of the Schr\"odinger problem and some of its connections with optimal transport , 2013, 1308.0215.

[29]  Frank Nielsen,et al.  Jeffreys Centroids: A Closed-Form Expression for Positive Histograms and a Guaranteed Tight Approximation for Frequency Histograms , 2013, IEEE Signal Processing Letters.

[30]  Christoph Schnörr,et al.  Convex Variational Image Restoration with Histogram Priors , 2013, SIAM J. Imaging Sci..

[31]  Leonidas J. Guibas,et al.  Wasserstein Propagation for Semi-Supervised Learning , 2014, ICML.

[32]  Carola-Bibiane Schönlieb,et al.  Imaging with Kantorovich-Rubinstein Discrepancy , 2014, SIAM J. Imaging Sci..

[33]  Nicu Sebe,et al.  Simultaneous Ground Metric Learning and Matrix Factorization with Earth Mover's Distance , 2014, 2014 22nd International Conference on Pattern Recognition.

[34]  Adam M. Oberman,et al.  NUMERICAL METHODS FOR MATCHING FOR TEAMS AND WASSERSTEIN BARYCENTERS , 2014, 1411.3602.

[35]  Gui-Song Xia,et al.  Synthesizing and Mixing Stationary Gaussian Texture Models , 2014, SIAM J. Imaging Sci..

[36]  Arnaud Doucet,et al.  Fast Computation of Wasserstein Barycenters , 2013, ICML.

[37]  B. Lévy A Numerical Algorithm for L2 Semi-Discrete Optimal Transport in 3D , 2014, 1409.1279.

[38]  Julien Rabin,et al.  Sliced and Radon Wasserstein Barycenters of Measures , 2014, Journal of Mathematical Imaging and Vision.

[39]  Julien Rabin,et al.  Convex Color Image Segmentation with Optimal Transport Distances , 2015, SSVM.

[40]  M. Rumpf,et al.  A generalized model for optimal transport of images including dissipation and density modulation , 2015, 1504.01988.

[41]  Gabriel Peyré,et al.  Entropic Approximation of Wasserstein Gradient Flows , 2015, SIAM J. Imaging Sci..

[42]  Filippo Santambrogio,et al.  Optimal Transport for Applied Mathematicians , 2015 .

[43]  Gabriel Peyré,et al.  Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..

[44]  Gabriel Peyré,et al.  A Smoothed Dual Approach for Variational Wasserstein Problems , 2015, SIAM J. Imaging Sci..

[45]  Gabriel Peyré,et al.  Wasserstein barycentric coordinates , 2016, ACM Trans. Graph..

[46]  Gabriel Peyré,et al.  Stochastic Optimization for Large-scale Optimal Transport , 2016, NIPS.

[47]  Koji Tsuda,et al.  Tensor Balancing on Statistical Manifold , 2017, ICML.

[48]  Aleksander Madry,et al.  Matrix Scaling and Balancing via Box Constrained Newton's Method and Interior Point Methods , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[49]  Avi Wigderson,et al.  Much Faster Algorithms for Matrix Scaling , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[50]  Nicolas Courty,et al.  Optimal Transport for Domain Adaptation , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Nicolas Papadakis,et al.  Regularized Barycenters in the Wasserstein Space , 2017, GSI.

[52]  G. Carlier,et al.  Tomographic Reconstruction from a Few Views: A Multi-Marginal Optimal Transport Approach , 2017 .

[53]  David B. Dunson,et al.  Robust and Scalable Bayes via a Median of Subset Posterior Measures , 2014, J. Mach. Learn. Res..

[54]  Justin Solomon,et al.  Stochastic Wasserstein Barycenters , 2018, ICML.

[55]  Bruno Lévy,et al.  Notions of optimal transport theory and how to implement them on a computer , 2017, Comput. Graph..

[56]  Bernhard Schmitzer,et al.  Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems , 2016, SIAM J. Sci. Comput..

[57]  Gabriel Peyré,et al.  Computational Optimal Transport , 2018, Found. Trends Mach. Learn..

[58]  G. Carlier,et al.  On the total variation Wasserstein gradient flow and the TV-JKO scheme , 2017, ESAIM: Control, Optimisation and Calculus of Variations.