Computational Characterization of Osteoporosis Associated SNPs and Genes Identified by Genome-Wide Association Studies

Objectives Genome-wide association studies (GWASs) have revealed many SNPs and genes associated with osteoporosis. However, influence of these SNPs and genes on the predisposition to osteoporosis is not fully understood. We aimed to identify osteoporosis GWASs-associated SNPs potentially influencing the binding affinity of transcription factors and miRNAs, and reveal enrichment signaling pathway and “hub” genes of osteoporosis GWAS-associated genes. Methods We conducted multiple computational analyses to explore function and mechanisms of osteoporosis GWAS-associated SNPs and genes, including SNP conservation analysis and functional annotation (influence of SNPs on transcription factors and miRNA binding), gene ontology analysis, pathway analysis and protein-protein interaction analysis. Results Our results suggested that a number of SNPs potentially influence the binding affinity of transcription factors (NFATC2, MEF2C, SOX9, RUNX2, ESR2, FOXA1 and STAT3) and miRNAs. Osteoporosis GWASs-associated genes showed enrichment of Wnt signaling pathway, basal cell carcinoma and Hedgehog signaling pathway. Highly interconnected “hub” genes revealed by interaction network analysis are RUNX2, SP7, TNFRSF11B, LRP5, DKK1, ESR1 and SOST. Conclusions Our results provided the targets for further experimental assessment and further insight on osteoporosis pathophysiology.

[1]  L. Tran,et al.  Integrated Systems Approach Identifies Genetic Nodes and Networks in Late-Onset Alzheimer’s Disease , 2013, Cell.

[2]  Tim D. Spector,et al.  Genetics of osteoporosis from genome-wide association studies: advances and challenges , 2012, Nature Reviews Genetics.

[3]  J. Schaller,et al.  Job's Syndrome. Recurrent, "cold", staphylococcal abscesses. , 1966 .

[4]  Pak Chung Sham,et al.  GWAS3D: detecting human regulatory variants by integrative analysis of genome-wide associations, chromosome interactions and histone modifications , 2013, Nucleic Acids Res..

[5]  D. Evans,et al.  NEW PATHOLOGICAL INSTITUTE AT THE LONDON. , 1965, Lancet.

[6]  Damian Szklarczyk,et al.  The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored , 2010, Nucleic Acids Res..

[7]  A. Dunning,et al.  Beyond GWASs: illuminating the dark road from association to function. , 2013, American journal of human genetics.

[8]  G. Loots,et al.  Targeted deletion of Sost distal enhancer increases bone formation and bone mass , 2012, Proceedings of the National Academy of Sciences.

[9]  Lior Pachter,et al.  VISTA: computational tools for comparative genomics , 2004, Nucleic Acids Res..

[10]  S. Khosla,et al.  Estrogen and the skeleton , 2012, Trends in Endocrinology & Metabolism.

[11]  G. Karsenty,et al.  Osf2/Cbfa1: A Transcriptional Activator of Osteoblast Differentiation , 1997, Cell.

[12]  Johnny S. H. Kwan,et al.  Post-genome wide association studies and functional analyses identify association of MPP7 gene variants with site-specific bone mineral density. , 2012, Human molecular genetics.

[13]  Jiliang Li JAK-STAT and bone metabolism , 2013, JAK-STAT.

[14]  Sharon R Grossman,et al.  Integrating common and rare genetic variation in diverse human populations , 2010, Nature.

[15]  T. Komori Regulation of skeletal development by the Runx family of transcription factors , 2005, Journal of cellular biochemistry.

[16]  Qingyang Huang,et al.  Genetic study of complex diseases in the post-GWAS era. , 2015, Journal of genetics and genomics = Yi chuan xue bao.

[17]  Wyeth W. Wasserman,et al.  JASPAR: an open-access database for eukaryotic transcription factor binding profiles , 2004, Nucleic Acids Res..

[18]  S. Holland,et al.  Hyper-IgE syndrome with recurrent infections--an autosomal dominant multisystem disorder. , 1999, The New England journal of medicine.

[19]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[20]  Clifford A. Meyer,et al.  Genome-wide analysis of estrogen receptor binding sites , 2006, Nature Genetics.

[21]  Bernhard Horsthemke,et al.  Leveraging Cross-Species Transcription Factor Binding Site Patterns: From Diabetes Risk Loci to Disease Mechanisms , 2014, Cell.

[22]  Daniel L. Koller,et al.  Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture , 2012, Nature Genetics.

[23]  Richard R. Behringer,et al.  Sox9 is required for cartilage formation , 1999, Nature Genetics.

[24]  E. Canalis,et al.  Nuclear Factor of Activated T-cells (NFAT)c2 Inhibits Notch Receptor Signaling in Osteoblasts* , 2012, The Journal of Biological Chemistry.

[25]  Yurii S. Aulchenko,et al.  Twenty bone mineral density loci identified by large-scale meta-analysis of genome-wide association studies , 2009, Nature Genetics.

[26]  David M. Evans,et al.  Meta-Analysis of Genome-Wide Scans for Total Body BMD in Children and Adults Reveals Allelic Heterogeneity and Age-Specific Effects at the WNT16 Locus , 2012, PLoS genetics.

[27]  Gary D. Stormo,et al.  Novel Modeling of Combinatorial miRNA Targeting Identifies SNP with Potential Role in Bone Density , 2012, PLoS Comput. Biol..

[28]  G. Stein,et al.  MicroRNA control of bone formation and homeostasis , 2012, Nature Reviews Endocrinology.

[29]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[30]  Larry W. Moreland,et al.  Nuclear factor of activated T-cells , 2004 .

[31]  Association of CDX1 binding site of periostin gene with bone mineral density and vertebral fracture risk , 2012, Osteoporosis International.

[32]  S. Lei,et al.  Polymorphisms in Predicted miRNA Binding Sites and Osteoporosis , 2010, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[33]  T. Kodama,et al.  NFAT and Osterix cooperatively regulate bone formation , 2005, Nature Medicine.

[34]  D. Haussler,et al.  Aligning multiple genomic sequences with the threaded blockset aligner. , 2004, Genome research.

[35]  Kari Stefansson,et al.  Multiple genetic loci for bone mineral density and fractures. , 2008, The New England journal of medicine.

[36]  Hong-Wen Deng,et al.  Searching for osteoporosis genes in the post-genome era: progress and challenges , 2003, Osteoporosis International.

[37]  Peggy Hall,et al.  The NHGRI GWAS Catalog, a curated resource of SNP-trait associations , 2013, Nucleic Acids Res..

[38]  Jing Wang,et al.  WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013 , 2013, Nucleic Acids Res..

[39]  E. Canalis,et al.  Activation Of Nfatc2 in osteoblasts causes osteopenia , 2015, Journal of cellular physiology.

[40]  David S. Lawrie,et al.  Comparative population genomics: power and principles for the inference of functionality. , 2014, Trends in genetics : TIG.

[41]  S. Cummings,et al.  Epidemiology and outcomes of osteoporotic fractures , 2002, The Lancet.

[42]  David Haussler,et al.  The UCSC Genome Browser database: 2014 update , 2013, Nucleic Acids Res..