Thermal dynamics assessment of vanadium redox flow batteries and thermal management by active temperature control

[1]  F. V. Conte,et al.  Innovative battery thermal management system based on hydrogen storage in metal hydrides for fuel cell hybrid electric vehicles , 2022, Applied Energy.

[2]  A. Bentien,et al.  Temperature-Induced Precipitation of V2O5 in Vanadium Flow Batteries—Revisited , 2021, Batteries.

[3]  Bahman Khaki,et al.  Parameter identification of thermal model of vanadium redox batteries by metaheuristic algorithms , 2021 .

[4]  Shichun Yang,et al.  A review on recent progress, challenges and perspective of battery thermal management system , 2021, International Journal of Heat and Mass Transfer.

[5]  Massimo Guarnieri,et al.  Standby thermal management system for a kW-class vanadium redox flow battery , 2020, Energy Conversion and Management.

[6]  M. Guarnieri,et al.  Thermal modeling of industrial-scale vanadium redox flow batteries in high-current operations , 2019, Journal of Power Sources.

[7]  Zhiguo Qu,et al.  Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study , 2019, Applied Energy.

[8]  Weixiong Wu,et al.  A critical review of battery thermal performance and liquid based battery thermal management , 2019, Energy Conversion and Management.

[9]  Md. Parvez Akter,et al.  Optimal Charging of Vanadium Redox Flow Battery with Time-Varying Input Power , 2019, Batteries.

[10]  A. Bhattacharjee,et al.  Development of an efficient thermal management system for Vanadium Redox Flow Battery under different charge-discharge conditions , 2018, Applied Energy.

[11]  Myung-Hyun Shim,et al.  Building Energy Management Strategy Using an HVAC System and Energy Storage System , 2018, Energies.

[12]  Kauko Leiviskä,et al.  A Dynamic Model for Indoor Temperature Prediction in Buildings , 2018, Energies.

[13]  J. Jeon,et al.  A high-temperature tolerance solution for positive electrolyte of vanadium redox flow batteries , 2017 .

[14]  Menglian Zheng,et al.  Dynamic control strategy for the electrolyte flow rate of vanadium redox flow batteries , 2017, Applied Energy.

[15]  Jie Bao,et al.  A dynamic plug flow reactor model for a vanadium redox flow battery cell , 2016 .

[16]  M. Skyllas-Kazacos,et al.  The Effect of Additives on the High‐Temperature Stability of the Vanadium Redox Flow Battery Positive Electrolytes , 2016 .

[17]  Zhengguo Zhang,et al.  A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling , 2015 .

[18]  Binyu Xiong,et al.  Dynamic electro-thermal modeling of all-vanadium redox flow battery with forced cooling strategies , 2014 .

[19]  Tao Wang,et al.  Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies , 2014 .

[20]  Binyu Xiong,et al.  Dynamic thermal-hydraulic modeling and stack flow pattern analysis for all-vanadium redox flow battery , 2014 .

[21]  Heesung Park,et al.  A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles , 2013 .

[22]  Jie Bao,et al.  Thermal modelling of battery configuration and self-discharge reactions in vanadium redox flow battery , 2012 .

[23]  M. Skyllas-Kazacos,et al.  Vanadium redox cell electrolyte optimization studies , 1990 .

[24]  Jingyu Xi,et al.  Broad temperature adaptability of vanadium redox flow battery—Part 1: Electrolyte research , 2016 .