The complexity of clique graph recognition

A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C(G) the clique family of G. The clique graph of G, denoted by K(G), is the intersection graph of C(G). Say that G is a clique graph if there exists a graph H such that G=K(H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.

[1]  Fred S. Roberts,et al.  A Characterization of Clique Graphs. , 1971 .

[2]  Jayme Luiz Szwarcfiter,et al.  Iterated clique graphs with increasing diameters , 1998 .

[3]  João Meidanis,et al.  Algebraic theory for the clique operator , 2001, J. Braz. Comput. Soc..

[4]  J. Szwarcfiter A Survey on Clique Graphs , 2003 .

[5]  F. McMorris,et al.  Topics in Intersection Graph Theory , 1987 .

[6]  Sylvain Gravier,et al.  On Clique-inverse graphs of Kp-free graphs , 2004, Electron. Notes Discret. Math..

[7]  Miguel A. Pizaña,et al.  On hereditary clique-Helly self-clique graphs , 2008, Discret. Appl. Math..

[8]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[9]  Jayme Luiz Szwarcfiter,et al.  On clique-complete graphs , 1998, Discret. Math..

[10]  Feodor F. Dragan,et al.  Dually Chordal Graphs , 1998, SIAM J. Discret. Math..

[11]  F Escalante,et al.  On clique-critical graphs , 1974 .

[12]  Miguel A. Pizaña,et al.  Graph relations, clique divergence and surface triangulations , 2006, J. Graph Theory.

[13]  Celina M. H. de Figueiredo,et al.  Clique Graph Recognition Is NP-Complete , 2006, WG.

[14]  Miguel A. Pizaña,et al.  Dismantlings and iterated clique graphs , 2004, Discret. Math..

[15]  Liliana Alcón,et al.  Cliques and extended triangles. A necessary condition for planar clique graphs , 2004, Discret. Appl. Math..

[16]  Jayme Luiz Szwarcfiter,et al.  On cliques of Helly Circular-arc Graphs , 2008, Electron. Notes Discret. Math..

[17]  Erich Prisner,et al.  A common generalization of line graphs and clique graphs , 1994, J. Graph Theory.

[18]  Célia Picinin de Mello,et al.  The clique operator on cographs and serial graphs , 2004, Discret. Math..

[19]  Jayme Luiz Szwarcfiter,et al.  On clique convergent graphs , 1995, Graphs Comb..

[20]  Miguel A. Pizaña Distances and diameters on iterated clique graphs , 2004, Discret. Appl. Math..

[21]  Jayme Luiz Szwarcfiter,et al.  Recognizing Clique-Helly Graphs , 1997, Ars Comb..

[22]  Jayme Luiz Szwarcfiter,et al.  Recognizing Clique Graphs of Directed and Rooted Path Graphs , 1999, Discret. Appl. Math..

[23]  Liliana Alcón Clique-critical graphs: Maximum size and recognition , 2006, Discret. Appl. Math..

[24]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[25]  Dieter Kratsch,et al.  Graph-Theoretic Concepts in Computer Science , 1987, Lecture Notes in Computer Science.

[26]  Erich Prisner Convergence of iterated clique graphs , 1992, Discret. Math..

[27]  João Meidanis,et al.  On the Clique Operator , 1998, LATIN.

[28]  Jayme Luiz Szwarcfiter,et al.  Clique-inverse graphs of K 3 -free and K 4 -free graphs , 2000 .

[29]  Feodor F. Dragan,et al.  Dually Chordal Graphs , 1993, SIAM J. Discret. Math..

[30]  Marisa Gutierrez Intersection Graphs and the Clique Operator , 2001, Graphs Comb..

[31]  Jayme Luiz Szwarcfiter,et al.  Clique Graphs of Chordal and Path Graphs , 1994, SIAM J. Discret. Math..

[32]  Jayme Luiz Szwarcfiter,et al.  Clique‐inverse graphs of K3‐free and K4‐free graphs , 2000 .

[33]  F. Escalante Über iterierte Clique-Graphen , 1973 .

[34]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[35]  Jayme Luiz Szwarcfiter,et al.  Self‐clique graphs and matrix permutations , 2003, J. Graph Theory.

[36]  R. Hamelink A partial characterization of clique graphs , 1968 .