Parallel asynchronous algorithms for discrete data

Many problems in the area of symbolic computing can be solved by iterative algorithms. Implementations of these algorithms on multiprocessors can be synchronous or asynchronous. Asynchronous implementations are potentially more efficient because synchronization is a major source of performance degradation in most multiprocessor systems. In this paper, sufficient conditions for the convergence of asynchronous iterations to desired solutions are given. The main sufficient condition is shown to be also necessary for the case of finite data domains. The results are applied to prove the convergence of three asynchronous algorithms for the all-pairs shortest path problem, the consistent labeling problem, and a neural net model.

[1]  John N. Tsitsiklis,et al.  Distributed asynchronous deterministic and stochastic gradient optimization algorithms , 1986 .

[2]  Dimitri Bertsekas,et al.  Distributed dynamic programming , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[3]  Dimitri P. Bertsekas,et al.  Distributed asynchronous computation of fixed points , 1983, Math. Program..

[4]  Journal of the Association for Computing Machinery , 1961, Nature.

[5]  Robert M. Haralick,et al.  The Consistent Labeling Problem: Part I , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Michel Dubois,et al.  Generalized Asynchronous Iterations , 1986, CONPAR.

[7]  Debasis Mitra,et al.  A chaotic asynchronous algorithm for computing the fixed point of a nonnegative matrix of unit spectral radius , 1986, JACM.

[8]  John N. Tsitsiklis,et al.  Distributed Asynchronous Deterministic and Stochastic Gradient Optimization Algorithms , 1984, 1984 American Control Conference.

[9]  Kai Hwang,et al.  Computer architecture and parallel processing , 1984, McGraw-Hill Series in computer organization and architecture.

[10]  R. Lippmann,et al.  An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.

[11]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[12]  John N. Tsitsiklis,et al.  On the stability of asynchronous iterative processes , 1986, 1986 25th IEEE Conference on Decision and Control.

[13]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[14]  Michel Dubois,et al.  Sufficient conditions for the convergence of asynchronous iterations , 1989, Parallel Computing.

[15]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[16]  R M Haralick,et al.  The consistent labeling problem: part I. , 1979, IEEE transactions on pattern analysis and machine intelligence.

[17]  Gérard M. Baudet,et al.  Asynchronous Iterative Methods for Multiprocessors , 1978, JACM.

[18]  H. T. Kung,et al.  Synchronized and asynchronous parallel algorithms for multiprocessors , 1976 .

[19]  D. Bertsekas,et al.  Distributed asynchronous optimal routing in data networks , 1984, The 23rd IEEE Conference on Decision and Control.

[20]  P. Spiteri,et al.  Parallel asynchronous algorithms for solving boundary value problems , 1986 .

[21]  J. C. Miellou Asynchronous iterations and order intervals , 1986 .

[22]  J. Walrand,et al.  Distributed Dynamic Programming , 2022 .