Stable isotope evidence for the atmospheric origin of CO2 involved in carbonation of MSWI bottom ash

Abstract Stable isotopes were used to constrain the origin of CO2 involved in the ageing process of municipal solid waste incineration (MSWI) bottom ash under open-air conditions. The δ13C and δ18O values of CaCO3 occurring in MSWI bottom ash samples of variable age and the δ13C of the residual organic matter content were measured, and laboratory assessments made of the isotopic fractionation accompanying CaCO3 neo-formation during accelerated carbonation experiments of bottom ash or pure lime with atmospheric or industrial CO2. The results indicate that stable isotopic compositions exhibited by fresh and aged bottom ash samples reflect non-equilibrium processes resembling those described in the carbonation of concrete and mortar. They also lead to conclusions on the prevalent involvement of atmospheric CO2 in the open-air carbonation of MSWI bottom ash.

[1]  J. Pearce,et al.  Recarbonation of metamorphosed marls, Jordan , 1993 .

[2]  M. Grenier-loustalot,et al.  Municipal solid waste incineration bottom ash: Characterization and kinetic studies of organic matter , 1999 .

[3]  C. Pachiaudi,et al.  Isotopic Fractionation of Carbon During CO2 Absorption by Mortar , 1986, Radiocarbon.

[4]  M. Bird,et al.  Determination of the abundance and carbon isotope composition of elemental carbon in sediments , 1997 .

[5]  R. Létolle,et al.  Carbon‐13 and Oxygen‐18 Mass Spectrometry as a Potential Tool for the Study of Carbonate Phases in Concretes , 1990 .

[6]  M. Garstang,et al.  Causes of bulk carbon and nitrogen isotopic fractionations in the products of vegetation burns: laboratory studies , 1998 .

[7]  T. Taylor Eighmy,et al.  Petrogenesis of municipal solid waste combustion bottom ash , 1999 .

[8]  Patrice Piantone,et al.  Mineralogical study of secondary mineral phases from weathered MSWI bottom ash: implications for the modelling and trapping of heavy metals , 2004 .

[9]  K. C. Lohmann,et al.  δ18O and δ13C values of modern brachiopod shells , 1995 .

[10]  David Widory,et al.  The carbon isotope composition of atmospheric CO 2 in Paris , 2003 .

[11]  R. Paul Philp,et al.  Source Identification of Oil Spills Based on the Isotopic Composition of Individual Components in Weathered Oil Samples , 1997 .

[12]  I. Clark,et al.  Stable isotope disequilibria in travertine from high pH waters: Laboratory investigations and field observations from Oman , 1992 .

[13]  J. Hoefs,et al.  Kinetic 13C12C and 18O16O effects upon dissolution and outgassing of CO2 in the system CO2H2O , 1990 .

[14]  Patrice Piantone,et al.  Forecasting the long-term behaviour of municipal solid waste incineration bottom ash: rapid combined tests , 2000 .

[15]  G. Dongarrà,et al.  δ13C variations in tree rings as an indication of severe changes in the urban air quality , 2002 .

[16]  Rob N.J. Comans,et al.  Geochemical modeling of weathering reactions in municipal solid waste incinerator bottom ash , 1997 .

[17]  J. Fontes,et al.  The Terrestrial environment , 1980 .

[18]  W. Mook 13C in atmospheric CO2 , 1986 .

[19]  R. Kalin,et al.  Variation in stable carbon isotope fractionation during aerobic degradation of phenol and benzoate by contaminant degrading bacteria , 1999 .

[20]  J. Turner Kinetic fractionation of carbon-13 during calcium carbonate precipitation , 1982 .

[21]  O. Hjelmar,et al.  Municipal Solid Waste Incinerator Residues , 1997 .

[22]  D. McCarroll,et al.  Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings , 2003 .

[23]  R. Comans,et al.  Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash. , 2004, Environmental science & technology.

[24]  P. Deines,et al.  Chapter 9 – THE ISOTOPIC COMPOSITION OF REDUCED ORGANIC CARBON , 1980 .

[25]  H. Gilg,et al.  RARE EARTH ELEMENT AND ISOTOPE (C, O, SR) CHARACTERISTICS OF HYDROTHERMAL CARBONATES : GENETIC IMPLICATIONS FOR DOLOMITE-HOSTED TALC MINERALIZATION AT GOPFERSGRUN (FICHTELGEBIRGE, GERMANY) , 1999 .

[26]  Rob N.J. Comans,et al.  Modelling CA-Solubility in MSWI Bottom ASH Leachates , 1994 .

[27]  M. Dietzel,et al.  Chemical and 13C/12C- and 18O/16O-isotope evolution of alkaline drainage waters and the precipitation of calcite , 1992 .

[28]  A. Hirner,et al.  Stable isotope geochemistry of crude oils and of possible source rocks from New Zealand—1: carbon , 1989 .

[29]  E. Lichtfouse,et al.  Molecular, 13C, and 14C evidence for the allochthonous and ancient origin of C16C18 n-alkanes in modern soils , 1997 .

[30]  Stefano Ferrari,et al.  Chemical speciation of carbon in municipal solid waste incinerator residues. , 2002, Waste management.

[31]  S. Macko,et al.  Isotopic compositions of individual carbohydrates as indicators of early diagenesis of organic matter in peat , 1991 .

[32]  J. McCrea On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale , 1950 .

[33]  J. R. O'neil,et al.  Calcium-magnesium carbonate solid solutions from Holocene conglomerate cements and travertines in the Coast Range of California , 1971 .

[34]  J.J.J.M Goumans,et al.  Environmental Aspects Of Construction With Waste Materials , 1994 .

[35]  A. Fallick,et al.  The mechanism of carbonate growth on concrete structures, as elucidated by carbon and oxygen isotope analyses , 1991 .

[36]  Chris Zevenbergen,et al.  Geochemical factors controlling the mobilization of major elements during weathering of MSWI bottom ash , 1994 .

[37]  G. Faure Principles of isotope geology , 1977 .

[38]  Isotopic investigations of carbonate growth on concrete structures , 2003 .

[39]  L. Mazéas,et al.  Absence of stable carbon isotope fractionation of saturated and polycyclic aromatic hydrocarbons during aerobic bacterial biodegradation , 2002 .

[40]  Reinhard Niessner,et al.  Morphological and Chemical Characterization of Calcium-Hydrate Phases Formed in Alteration Processes of Deposited Municipal Solid Waste Incinerator Bottom Ash , 2000 .

[41]  J. Hoefs Stable Isotope Geochemistry , 1973 .

[42]  Michael Kersten,et al.  Leaching behaviour and solubility — Controlling solid phases of heavy metals in municipal solid waste incinerator ash , 1996 .

[43]  E. Keppens,et al.  Isotopic Fractionation of Oxygen and Carbon in Lime Mortar Under Natural Environmental Conditions , 1989, Radiocarbon.

[44]  B. Bauluz,et al.  Mineralogy and geochemistry of the carbonates in the Calatayud Basin (Zaragoza, Spain) , 1996 .

[45]  Nathalie Delville Etude mineralogique et physico-chimique des machefers d'incineration des ordures menageres (MIOM) en vue d'une utilisation en technique routiere , 2004 .

[46]  J. Hellou,et al.  Determination of the 13C12c ratios of individual PAH from environmental samples: can PAH sources be apportioned? , 1994 .

[47]  Peter Baccini,et al.  Chemical behaviour of municipal solid waste incinerator bottom ash in monofills , 1992 .