Polynomial splines over general T-meshes

The present authors have introduced polynomial splines over T-meshes (PHT-splines) and provided theories and applications for PHT-splines over hierarchical T-meshes. This paper generalizes PHT-splines to arbitrary topology over general T-meshes with any structures (GPT-splines). GPT-spline surfaces can be constructed through a unified scheme to interpolate the local geometric information at the basis vertices of the T-mesh. We also discuss general edge insertion and removal algorithms for GPT-splines. As applications, we present algorithms to construct a GPT-spline surface from a quadrilateral mesh and to simplify a tensor-product B-spline surface into a GPT-spline surface with superfluous edges removal.

[1]  David R. Forsey,et al.  Multiresolution Surface Reconstruction for Hierarchical B-splines , 1998, Graphics Interface.

[2]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[3]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[4]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[5]  Carlos Gonzalez-Ochoa,et al.  Localized-hierarchy surface splines (LeSS) , 1999, SI3D.

[6]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[7]  Jiansong Deng,et al.  Surface modeling with polynomial splines over hierarchical T-meshes , 2007, 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[8]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[9]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[10]  David L. Cardon,et al.  T-Spline Simplification , 2007 .

[11]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..