Buckybowl and its chiral hybrids featuring eight-membered rings and helicene units

A novel buckybowl and its chiral hybrids featuring eight-membered rings and helicene units have been synthesized and characterized. The resulting hybrid and its complex with C60 show promising ambipolar transport characteristics.

[1]  Han Xu,et al.  Nitrogen-Embedded Quintuple [7]Helicene: A Helicene-Azacorannulene Hybrid with Strong Near-Infrared Fluorescence. , 2022, Journal of the American Chemical Society.

[2]  Junzhi Liu,et al.  Synthesis of Defective Nanographenes Containing Joined Pentagons and Heptagons , 2022, Advanced science.

[3]  A. Osuka,et al.  Five-fold Symmetric Pentaindolo- and Pentakis(benzoindolo)-Corannulenes: Unique Structural Dynamics Derived from the Combination of Helical- and Bowl-Inversions. , 2021, Angewandte Chemie.

[4]  Liqiang Li,et al.  Creating Organic Functional Materials beyond Chemical Bond Synthesis by Organic Cocrystal Engineering. , 2021, Journal of the American Chemical Society.

[5]  A. Voityuk,et al.  Initiating Electron Transfer in Doubly Curved Nanographene Upon Supramolecular Complexation of C60 , 2021, Angewandte Chemie.

[6]  K. Baldridge,et al.  Enantiopure C5 Pentaindenocorannulenes: Chiral Graphenoid Materials. , 2021, Angewandte Chemie.

[7]  K. Itami,et al.  Construction of Heptagon-Containing Molecular Nanocarbons. , 2021, Angewandte Chemie.

[8]  Víctor Blanco,et al.  Octagon-embedded carbohelicene as chiral motif for CPL emission of saddle-helix nanographenes. , 2020, Angewandte Chemie.

[9]  W. Guo,et al.  Tuning the Properties of Corannulene-Based Polycyclic Aromatic Hydrocarbons by Varying the Fusing Positions of Corannulene. , 2020, Organic letters.

[10]  R. Webster,et al.  Mechanochemical Synthesis of Corannulene-Based Curved Nanographenes. , 2020, Angewandte Chemie.

[11]  K. Itami,et al.  Creation of negatively curved polyaromatics enabled by annulative coupling that forms an eight-membered ring , 2020, Nature Catalysis.

[12]  F. Rominger,et al.  An Isosteric Triaza Analogue of a Polycyclic Aromatic Hydrocarbon Monkey Saddle , 2020, Chemistry.

[13]  K. Sun,et al.  On-Surface Synthesis of a π-Extended Diaza[8]circulene. , 2020, Journal of the American Chemical Society.

[14]  W. Hu,et al.  One-Pot Domino Carbonylation Protocol for Aromatic Diimides toward n-type Organic Semiconductors. , 2020, Angewandte Chemie.

[15]  H. Shinokubo,et al.  as-Indaceno[3,2,1,8,7,6-ghijklm]terrylene as a near-infrared absorbing C70-fragment , 2020, Nature Communications.

[16]  H. Klauk,et al.  2,7,11,16‐Tetra‐tert‐Butyl Tetraindenopyrene Revisited by an “Inverse” Synthetic Approach , 2020, Chemistry.

[17]  Meng Chen,et al.  Rational Functionalization of a C70 Buckybowl to Enable a C70:Buckybowl Co-crystal for Organic Semiconductor Applications. , 2020, Journal of the American Chemical Society.

[18]  D. Guldi,et al.  Homo and Hetero Molecular 3D Nanographenes Employing a Cyclooctatetraene Scaffold. , 2019, Journal of the American Chemical Society.

[19]  F. Rominger,et al.  A Chiral Polycyclic Aromatic Hydrocarbon Monkey Saddle , 2019, Angewandte Chemie.

[20]  Zhifeng Liu,et al.  Synthesis, Structures, and Properties of Heptabenzo[7]circulene and Octabenzo[8]circulene. , 2019, Journal of the American Chemical Society.

[21]  Jishan Wu,et al.  Dicyclopenta[4,3,2,1- ghi:4',3',2',1'- pqr]perylene: A Bowl-Shaped Fragment of Fullerene C70 with Global Antiaromaticity. , 2019, Journal of the American Chemical Society.

[22]  D. Lentz,et al.  Corannulenes with Electron-Withdrawing Substituents: Synthetic Approaches and Resulting Structural and Electronic Properties. , 2018, Chemistry.

[23]  M. Stępień,et al.  Bowls, Hoops, and Saddles: Synthetic Approaches to Curved Aromatic Molecules. , 2018, Angewandte Chemie.

[24]  N. Martín,et al.  π-Extended Corannulene-Based Nanographenes: Selective Formation of Negative Curvature. , 2018, Journal of the American Chemical Society.

[25]  Q. Miao,et al.  Toward Negatively Curved Carbons. , 2018, Accounts of chemical research.

[26]  K. Nozaki,et al.  A Hybrid of Corannulene and Azacorannulene: Synthesis of a Highly Curved Nitrogen-Containing Buckybowl. , 2018, Angewandte Chemie.

[27]  L. T. Scott,et al.  A Quintuple [6]Helicene with a Corannulene Core as a C5 -Symmetric Propeller-Shaped π-System. , 2018, Angewandte Chemie.

[28]  K. Nozaki,et al.  Synthesis of Pyrrole-Fused Corannulenes: 1,3-Dipolar Cycloaddition of Azomethine Ylides to Corannulene. , 2017, Angewandte Chemie.

[29]  Shoko Kikkawa,et al.  Synthesis, Structures, and Properties of Hexapole Helicenes: Assembling Six [5]Helicene Substructures into Highly Twisted Aromatic Systems. , 2017, Journal of the American Chemical Society.

[30]  Zhifeng Liu,et al.  A Twisted Nanographene Consisting of 96 Carbon Atoms. , 2017, Angewandte Chemie.

[31]  Kim K Baldridge,et al.  Pentaindenocorannulene: Properties, Assemblies, and C60 Complex. , 2016, Angewandte Chemie.

[32]  L. T. Scott,et al.  Corannulene-Helicene Hybrids: Chiral π-Systems Comprising Both Bowl and Helical Motifs. , 2016, Organic letters.

[33]  K. Müllen,et al.  Fused Dibenzo[a,m]rubicene: A New Bowl-Shaped Subunit of C70 Containing Two Pentagons. , 2016, Journal of the American Chemical Society.

[34]  K. Baldridge,et al.  Extended Corannulenes: Aromatic Bowl/Sheet Hybridization. , 2015, Angewandte Chemie.

[35]  H. Shinokubo,et al.  Nitrogen-embedded buckybowl and its assembly with C60 , 2015, Nature Communications.

[36]  Jianbin Xu,et al.  Solution-Processed Ambipolar Organic Thin-Film Transistors by Blending p- and n-Type Semiconductors: Solid Solution versus Microphase Separation. , 2015, ACS Applied Materials and Interfaces.

[37]  Severin T. Schneebeli,et al.  Synthesis and structural data of tetrabenzo[8]circulene. , 2014, Chemistry.

[38]  D. Perepichka,et al.  Crystal engineering of dual channel p/n organic semiconductors by complementary hydrogen bonding. , 2014, Angewandte Chemie.

[39]  Sarah N. Spisak,et al.  Bowl-Shaped Polyarenes as Concave–Convex Shape Complementary Hosts for C60- and C70-Fullerenes , 2014 .

[40]  Toshiyasu Suzuki,et al.  Tetrabenzo[8]circulene: aromatic saddles from negatively curved graphene. , 2013, Journal of the American Chemical Society.

[41]  L. T. Scott,et al.  A grossly warped nanographene and the consequences of multiple odd-membered-ring defects. , 2013, Nature chemistry.

[42]  Oh Kyu Kwon,et al.  Tailor-made highly luminescent and ambipolar transporting organic mixed stacked charge-transfer crystals: an isometric donor-acceptor approach. , 2013, Journal of the American Chemical Society.

[43]  M. Kuo,et al.  Bowl-shaped fragments of C70 or higher fullerenes: synthesis, structural analysis, and inversion dynamics. , 2013, Angewandte Chemie.

[44]  Daoben Zhu,et al.  Fullerene/sulfur-bridged annulene cocrystals: two-dimensional segregated heterojunctions with ambipolar transport properties and photoresponsivity. , 2013, Journal of the American Chemical Society.

[45]  H. Sakurai,et al.  Enantioselective synthesis of a chiral nitrogen-doped buckybowl , 2012, Nature Communications.

[46]  Tadashi Mori,et al.  Theoretical and experimental studies on circular dichroism of carbo[n]helicenes. , 2012, The journal of physical chemistry. A.

[47]  Louise N. Dawe,et al.  Corannulene and its penta-tert-butyl derivative co-crystallize 1:1 with pristine C60-fullerene. , 2012, Chemical communications.

[48]  M. Kuo,et al.  Synthesis and structural analysis of a highly curved buckybowl containing corannulene and sumanene fragments. , 2011, Journal of the American Chemical Society.

[49]  D. Canevet,et al.  Wraparound hosts for fullerenes: tailored macrocycles and cages. , 2011, Angewandte Chemie.

[50]  M. Iyoda,et al.  Cyclic tetrathiophenes planarized by silicon and sulfur bridges bearing antiaromatic cyclooctatetraene core: syntheses, structures, and properties. , 2010, Journal of the American Chemical Society.

[51]  S. Tagawa,et al.  Anisotropic electron transport properties in sumanene crystal. , 2009, Journal of the American Chemical Society.

[52]  Qingxin Tang,et al.  High‐Performance Air‐Stable Bipolar Field‐Effect Transistors of Organic Single‐Crystalline Ribbons with an Air‐Gap Dielectric , 2008 .

[53]  A. Sygula,et al.  A double concave hydrocarbon buckycatcher. , 2007, Journal of the American Chemical Society.

[54]  J. Siegel,et al.  Aromatic molecular-bowl hydrocarbons: synthetic derivatives, their structures, and physical properties. , 2006, Chemical reviews.

[55]  L. T. Scott,et al.  Geodesic polyarenes by flash vacuum pyrolysis. , 2006, Chemical reviews.

[56]  L. T. Scott,et al.  Hemibuckminsterfullerene C30H12: X-ray crystal structures of the parent hydrocarbon and of the two-dimensional organometallic network {[Rh2(O2CCF3)4]3.(C30H12)} , 2004 .

[57]  M. Garcia‐Garibay,et al.  One step Pd(0)-catalyzed synthesis, X-ray analysis, and photophysical properties of cyclopent[hi]aceanthrylene: fullerene-like properties in a nonalternant cyclopentafused aromatic hydrocarbon. , 2002, Journal of the American Chemical Society.

[58]  K. Baldridge,et al.  Structure/energy correlation of bowl depth and inversion barrier in corannulene derivatives: combined experimental and quantum mechanical analysis. , 2001, Journal of the American Chemical Society.

[59]  A. Rajca,et al.  D2-Symmetric Dimer of 1,1‘-Binaphthyl and Its Chiral π-Conjugated Carbodianion , 2000 .

[60]  E. Würthwein,et al.  Racemization barriers of helicenes: A computational study , 1996 .

[61]  T. Luh,et al.  Fluorescence of fullerene derivatives at room temperature , 1995 .

[62]  A. Mackay,et al.  Diamond from graphite , 1991, Nature.