Simulating a burnt-bridges DNA motor with a coarse-grained DNA model

We apply a recently-developed coarse-grained model of DNA, designed to capture the basic physics of nanotechnological DNA systems, to the study of a ‘burnt-bridges’ DNA motor consisting of a single-stranded cargo that steps processively along a track of single-stranded stators. We demonstrate that the model is able to simulate such a system, and investigate the sensitivity of the stepping process to the spatial separation of stators, finding that an increased distance can suppress successful steps due to the build up of unfavourable tension. The mechanism of suppression suggests that varying the distance between stators could be used as a method for improving signal-to-noise ratios for motors that are required to make a decision at a junction of stators.

[1]  S. Wereley,et al.  Soft Matter , 2014 .

[2]  Flavio Romano,et al.  Coarse-grained simulations of DNA overstretching. , 2012, The Journal of chemical physics.

[3]  F. Simmel,et al.  Switching the conformation of a DNA molecule with a chemical oscillator. , 2005, Nano letters.

[4]  Russell P. Goodman,et al.  Reconfigurable, braced, three-dimensional DNA nanostructures. , 2008, Nature nanotechnology.

[5]  Sergio Pantano,et al.  A Coarse Grained Model for Atomic-Detailed DNA Simulations with Explicit Electrostatics. , 2010, Journal of chemical theory and computation.

[6]  Iain G. Johnston,et al.  The self-assembly of DNA Holliday junctions studied with a minimal model. , 2008, The Journal of chemical physics.

[7]  R. Guimerà,et al.  Mesoscopic modeling for nucleic acid chain dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  J. Rottler,et al.  A systematically coarse-grained model for DNA and its predictions for persistence length, stacking, twist, and chirality. , 2009, The Journal of chemical physics.

[9]  S. Whitelam,et al.  The role of collective motion in examples of coarsening and self-assembly. , 2008, Soft Matter.

[10]  F. J. Luque,et al.  Frontiers in molecular dynamics simulations of DNA. , 2012, Accounts of chemical research.

[11]  J. Doye,et al.  Sequence-dependent thermodynamics of a coarse-grained DNA model. , 2012, The Journal of chemical physics.

[12]  KumarShankar,et al.  The weighted histogram analysis method for free-energy calculations on biomolecules. I , 1992 .

[13]  N. Seeman,et al.  A precisely controlled DNA biped walking device , 2004 .

[14]  Alexey V Onufriev,et al.  Heat conductivity of DNA double helix. , 2010, Physical review. B, Condensed matter and materials physics.

[15]  A. Turberfield,et al.  DNA nanomachines. , 2007, Nature nanotechnology.

[16]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[17]  Nils B Becker,et al.  From rigid base pairs to semiflexible polymers: coarse-graining DNA. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Hao Yan,et al.  Folding and cutting DNA into reconfigurable topological nanostructures. , 2010, Nature nanotechnology.

[19]  Erik Winfree,et al.  Thermodynamic Analysis of Interacting Nucleic Acid Strands , 2007, SIAM Rev..

[20]  P. Yin,et al.  Complex shapes self-assembled from single-stranded DNA tiles , 2012, Nature.

[21]  Jonathan Bath,et al.  A DNA-based molecular motor that can navigate a network of tracks. , 2012, Nature nanotechnology.

[22]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[23]  M. Kenward,et al.  Brownian dynamics simulations of single-stranded DNA hairpins. , 2009, The Journal of chemical physics.

[24]  Joseph M. Schaeffer,et al.  On the biophysics and kinetics of toehold-mediated DNA strand displacement , 2013, Nucleic acids research.

[25]  D. Muller,et al.  A Ferroelectric Oxide Made Directly on Silicon , 2009, Science.

[26]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[27]  Robert M. Dirks,et al.  An autonomous polymerization motor powered by DNA hybridization , 2007, Nature Nanotechnology.

[28]  Marc Joyeux,et al.  Thermal and mechanical denaturation properties of a DNA model with three sites per nucleotide. , 2011, The Journal of chemical physics.

[29]  D. Schwartz,et al.  A coarse grain model for DNA. , 2007, The Journal of chemical physics.

[30]  Yan Liu,et al.  DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires , 2003, Science.

[31]  D. Y. Zhang,et al.  Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA , 2007, Science.

[32]  Miran Liber,et al.  Studying the structural dynamics of bipedal DNA motors with single-molecule fluorescence spectroscopy. , 2012, ACS nano.

[33]  Tamar Schlick,et al.  Innovations in Biomolecular Modeling and Simulations , 2012 .

[34]  Faisal A. Aldaye,et al.  Loading and selective release of cargo in DNA nanotubes with longitudinal variation. , 2010, Nature chemistry.

[35]  Christian Matek,et al.  DNA cruciform arms nucleate through a correlated but asynchronous cooperative mechanism. , 2012, The journal of physical chemistry. B.

[36]  Matt A. King,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012 .

[37]  F. Sciortino,et al.  Self-assembly of short DNA duplexes: from a coarse-grained model to experiments through a theoretical link , 2012, 1204.0985.

[38]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[39]  Chengde Mao,et al.  An autonomous DNA nanomotor powered by a DNA enzyme. , 2004, Angewandte Chemie.

[40]  J. Reif,et al.  A unidirectional DNA walker that moves autonomously along a track. , 2004, Angewandte Chemie.

[41]  A. Turberfield,et al.  Direct observation of stepwise movement of a synthetic molecular transporter. , 2011, Nature nanotechnology.

[42]  S. Whitelam,et al.  Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles. , 2005, The Journal of chemical physics.

[43]  F. Crick,et al.  Molecular structure of nucleic acids , 2004, JAMA.

[44]  N. Pierce,et al.  A synthetic DNA walker for molecular transport. , 2004, Journal of the American Chemical Society.

[45]  D. Ingber,et al.  Self-assembly of 3D prestressed tensegrity structures from DNA , 2010, Nature nanotechnology.

[46]  Jonathan Bath,et al.  Optimizing DNA nanotechnology through coarse-grained modeling: a two-footed DNA walker. , 2013, ACS nano.

[47]  J. SantaLucia,et al.  The thermodynamics of DNA structural motifs. , 2004, Annual review of biophysics and biomolecular structure.

[48]  J. Araque,et al.  Lattice model of oligonucleotide hybridization in solution. I. Model and thermodynamics. , 2011, The Journal of chemical physics.

[49]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[50]  D. Ingber,et al.  Self-assembly of three-dimensional prestressed tensegrity structures from DNA , 2010 .

[51]  P. Yin,et al.  A DNAzyme that walks processively and autonomously along a one-dimensional track. , 2005, Angewandte Chemie.

[52]  J. Doye,et al.  DNA nanotweezers studied with a coarse-grained model of DNA. , 2009, Physical review letters.

[53]  Carsten Svaneborg,et al.  LAMMPS framework for dynamic bonding and an application modeling DNA , 2011, Comput. Phys. Commun..

[54]  J. Doye,et al.  The effect of topology on the structure and free energy landscape of DNA kissing complexes. , 2012, The Journal of chemical physics.

[55]  Lorenzo Rovigatti,et al.  Coarse-graining DNA for simulations of DNA nanotechnology. , 2013, Physical chemistry chemical physics : PCCP.

[56]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[57]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[58]  K. Drukker,et al.  Model simulations of DNA denaturation dynamics , 2001 .

[59]  J. Šponer,et al.  Comparison of intrinsic stacking energies of ten unique dinucleotide steps in A-RNA and B-DNA duplexes. Can we determine correct order of stability by quantum-chemical calculations? , 2010, The journal of physical chemistry. B.

[60]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[61]  A. Turberfield,et al.  Engineering a 2D protein-DNA crystal. , 2005, Angewandte Chemie.

[62]  J. SantaLucia,et al.  A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[63]  A. Turberfield,et al.  Mechanism for a directional, processive, and reversible DNA motor. , 2009, Small.

[64]  G. Wilson,et al.  Site-specific DNA-nicking mutants of the heterodimeric restriction endonuclease R.BbvCI. , 2005, Journal of molecular biology.

[65]  Richard A. Muscat,et al.  A programmable molecular robot. , 2011, Nano letters.

[66]  J. Doye,et al.  Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. , 2010, The Journal of chemical physics.

[67]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[68]  J. Doye,et al.  DNA hybridization kinetics: zippering, internal displacement and sequence dependence , 2013, Nucleic acids research.

[69]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[70]  Alexey Savelyev,et al.  Molecular renormalization group coarse-graining of polymer chains: application to double-stranded DNA. , 2009, Biophysical journal.

[71]  J. Reif,et al.  DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires , 2003, Science.

[72]  A. Turberfield,et al.  Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. , 2008, Physical review letters.

[73]  Ruojie Sha,et al.  A Bipedal DNA Brownian Motor with Coordinated Legs , 2009, Science.

[74]  Ruchuan Liu,et al.  Bipedal nanowalker by pure physical mechanisms. , 2012, Physical review letters.

[75]  Pamela E. Constantinou,et al.  From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal , 2009, Nature.

[76]  Jehoshua Bruck,et al.  Neural network computation with DNA strand displacement cascades , 2011, Nature.

[77]  J J de Pablo,et al.  A mesoscale model of DNA and its renaturation. , 2009, Biophysical journal.

[78]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[79]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[80]  Kevin D. Dorfman,et al.  Moving beyond Watson-Crick models of coarse grained DNA dynamics. , 2011, The Journal of chemical physics.

[81]  A. Turberfield,et al.  A free-running DNA motor powered by a nicking enzyme. , 2005, Angewandte Chemie.

[82]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[83]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[84]  Russell P. Goodman,et al.  Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication , 2005, Science.

[85]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .