Modeling Deep Burn TRISO particle nuclear fuel

[1]  R. Stoller,et al.  Ab initio study of palladium and silicon carbide , 2011 .

[2]  T. Besmann Modeling the thermochemical behavior of AmO2−x , 2010 .

[3]  D. Morgan,et al.  Ab initio study of point defect structures and energetics in ZrC , 2010 .

[4]  Theodore M. Besmann,et al.  Thermochemical assessment of oxygen gettering by SiC or ZrC in PuO2−x TRISO fuel , 2010 .

[5]  D. Wongsawaeng Performance modeling of Deep Burn TRISO fuel using ZrC as a load-bearing layer and an oxygen getter , 2010 .

[6]  Nicolas Bock,et al.  Extended Lagrangian Born-Oppenheimer molecular dynamics with dissipation. , 2009, The Journal of chemical physics.

[7]  F. Varchon,et al.  Graphene on the C-terminated SiC (0001̄) surface: An ab initio study , 2009, 0902.1638.

[8]  M. Jones,et al.  Spin-orbit coupling in an f-electron tight-binding model: Electronic properties of Th, U, and Pu , 2008, 0806.0420.

[9]  J. Gan,et al.  High temperature interface reactions of TiC, TiN, and SiC with palladium and rhodium , 2008 .

[10]  Christine Guéneau,et al.  Thermodynamic modelling of the plutonium–oxygen system , 2008 .

[11]  Anders M N Niklasson,et al.  Extended Born-Oppenheimer molecular dynamics. , 2008, Physical review letters.

[12]  Oya Özdere Gülol,et al.  Performance analysis of TRISO coated fuel particles with kernel migration , 2008 .

[13]  M. H. Kaye,et al.  Thermodynamic treatment of noble metal fission products in nuclear fuel , 2007 .

[14]  T. Tan,et al.  The growth of Pd thin films on a 6H-SiC(0 0 0 1) substrate , 2007 .

[15]  J. K. Lee,et al.  An analytical model for the Amoeba effect in UO2 fuel pellets , 2006 .

[16]  D. Djurović,et al.  Thermodynamic modelling of the cerium–oxygen system , 2006 .

[17]  S. Zinkle,et al.  Thermal conductivity degradation of ceramic materials due to low temperature, low dose neutron irradiation , 2005 .

[18]  Kazuhiro Sawa,et al.  Research and development on HTGR fuel in the HTTR project , 2004 .

[19]  Gregory K. Miller,et al.  Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance , 2003 .

[20]  Anders M.N. Niklasson Expansion algorithm for the density matrix , 2002 .

[21]  Christine Guéneau,et al.  Thermodynamic assessment of the uranium–oxygen system , 2002 .

[22]  Gunnar Eriksson,et al.  FactSage thermochemical software and databases , 2002 .

[23]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[24]  M. Hillert The compound energy formalism , 2001 .

[25]  R. Schmid-Fetzer,et al.  Interface reactions between silicon carbide and metals (Ni, Cr, Pd, Zr) , 2001 .

[26]  Kazuhiro Sawa,et al.  Fission Product Release Behavior of Individual Coated Fuel Particles for High-Temperature Gas-Cooled Reactors , 2000 .

[27]  Kazuo Minato,et al.  Retention of fission product caesium in ZrC-coated fuel particles for high-temperature gas-cooled reactors , 2000 .

[28]  Kazuhiro Sawa,et al.  Irradiation Experiment on ZrC-Coated Fuel Particles for High-Temperature Gas-Cooled Reactors , 2000 .

[29]  Dirk Reith,et al.  Cause and Effect Reversed in Non-Equilibrium Molecular Dynamics: An Easy Route to Transport Coefficients , 1999 .

[30]  T. Tan,et al.  Reaction of palladium thin films with an Si-rich 6H-SiC(0001)(3×3) surface , 1999 .

[31]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[32]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[33]  S. Yip,et al.  Atomistic modeling of finite-temperature properties of crystalline β-SiC: II. Thermal conductivity and effects of point defects , 1998 .

[34]  Kazuo Minato,et al.  Fission product release from ZrC-coated fuel particles during post-irradiation heating at 1800 and 2000°C , 1997 .

[35]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[36]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[37]  Krüger,et al.  First-principles calculations of beta -SiC(001) surfaces. , 1996, Physical review. B, Condensed matter.

[38]  T. Ogawa,et al.  Fission product release from ZrC-coated fuel particles during postirradiation heating at 1600°C , 1995 .

[39]  A. Guillermet Analysis of thermochemical properties and phase stability in the zirconium-carbon system , 1995 .

[40]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[41]  T. Ogawa,et al.  Release behavior of metallic fission products from HTGR fuel particles at 1600 to 1900°C , 1993 .

[42]  D. P. White The effect of ionizing and displacive radiation on the thermal conductivity of alumina , 1993 .

[43]  Toru Ogawa,et al.  Performance of ZrC-Coated Particle Fuel in Irradiation and Postirradiation Heating Tests , 1992 .

[44]  Shusaku Shiozawa,et al.  Research and Development of HTTR Coated Particle Fuel , 1991 .

[45]  W. G. Hoover Computational Statistical Mechanics , 1991 .

[46]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[47]  C. Pai,et al.  X‐ray diffraction and ion backscattering study of thermally annealed Pd/SiC and Ni/SiC , 1985 .

[48]  R. Bullock Fission-product release during postirradiation annealing of several types of coated fuel particles , 1984 .

[49]  M. Wagner-Löffler Amoeba behavior of UO/sub 2/ coated particle fuel , 1977 .

[50]  R. Pearson,et al.  Kernel Migration for HTGR Fuels from the System Th‐U‐Pu‐C‐O‐N , 1977 .

[51]  J. Turnbull,et al.  Influence of Irradiation Temperature, Burnup, and Fuel Composition on Gas Pressure (Xe, Kr, CO, CO2) in Coated Particle Fuels , 1976 .

[52]  T. Gulden Carbon Thermal Diffusion in the UC2‐C System , 1972 .

[53]  Paul G. Klemens,et al.  Thermal Resistance due to Point Defects at High Temperatures , 1960 .

[54]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .