An application of Pettifor structure maps for the identification of pseudo-binary quasicrystalline intermetallics

Quasicrystal-forming ability is considered from the viewpoint of Pettifor maps, where a single phenomenological coordinate, the Mendeleev number, captures the bonding characteristics of elements in forming intermetallics. By considering the largest sized atom as the most important constituent, it is shown that most known ternary and quaternary quasicrystals can be treated as pseudo-binary intermetallics. This also results in a classification of quasicrystals into four structural classes based on the nature of the bond orbital – s, p, d or f – of the large atom with four associated related crystal structures. A colour scheme is introduced to indicate preferences for two types of sites. We propose a new classification of quasicrystals as centred on Li, Mg, Al, Ga, Ca, Sc, Y, Ti, Zr, Hf and rare earth elements, as they are the largest atoms in the constituent quasicrystals in contrast to the conventional classification based on majority species.

[1]  G. Miller,et al.  Experimental and theoretical studies of elemental site preferences in quasicrystalline approximants (R-phases) within the Li-Mg-Zn-Al system. , 2001, Inorganic chemistry.

[2]  E. Abe,et al.  Stable Icosahedral Quasicrystals in the Cd–Mg–RE (RE = Rare Earth Element) Systems , 2000 .

[3]  Phillips,et al.  Global multinary structural chemistry of stable quasicrystals, high-TC ferroelectrics, and high-Tc superconductors. , 1992, Physical review. B, Condensed matter.

[4]  C. Dong,et al.  Composition rule of bulk metallic glasses and quasicrystals using electron concentration criterion , 2003 .

[5]  T. Takeuchi,et al.  Interpretation of the Hume–Rothery rule in complex electron compounds: γ-phase Cu5Zn8 Alloy, FK-type Al30Mg40Zn30 and MI-type Al68Cu7Ru17Si8 1/1–1/1–1/1 approximants , 2004 .

[6]  G. Kreiner,et al.  A new cluster concept and its application to quasi-crystals of the i-AlMnSi family and closely related crystalline structures , 1995 .

[7]  A. Mackay A dense non-crystallographic packing of equal spheres , 1962 .

[8]  Q. B. Yang Structures of Ti2(Ni, V) in crystalline and quasicrystalline phases , 1988 .

[9]  E. Abe,et al.  Alloys: A stable binary quasicrystal , 2000, Nature.

[10]  A. Inoue,et al.  Initial crystallization processes of Hf-Cu-M (M=Pd, Pt or Ag) amorphous alloys , 2001 .

[11]  G. Raynor Progress in the theory of alloys , 1949 .

[12]  S. Takeuchi,et al.  New stable icosahedral phases in Al-Pd-Ru and Al-Pd-Os systems , 2002 .

[13]  Yoshihiko Yokoyama,et al.  Formation Criteria and Growth Morphology of Quasicrystals in Al–Pd–TM (TM=Transition Metal) Alloys , 1991 .

[14]  Zhiping Luo,et al.  Quasicrystals in as-cast Mg-Zn-RE alloys , 1993 .

[15]  N. Tamura The concept of crystalline approximants for decagonal and icosahedral quasicrystals , 1997 .

[16]  N. Mukhopadhyay,et al.  An electron microscopic study of quasicrystals in a quaternary alloy : Mg32(Al, Zn, Cu)49 , 1986 .

[17]  J. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .

[18]  Vijaya Kumar,et al.  Electronic structure of the bulk and layers of the alkaline earths (Be-Ba) , 1999 .

[19]  M. Audier,et al.  A quasicrystal structure model for AI-Mn , 1985 .

[20]  Ze Zhang,et al.  A new icosahedral phase with m35 symmetry , 1985 .

[21]  K. Kuo,et al.  Icosahedral and stable decagonal quasicrystals in Ga46 23Cu23 Si8, Ga50 Co25 Cu25 and Ga46 V23 Ni23 Si8 , 1997 .

[22]  G. Sastry,et al.  A basis for the synthesis of quasicrystals , 1985 .

[23]  F. C. Frank,et al.  Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures , 1959 .

[24]  H. Kaneko,et al.  Cu-based icosahedral quasicrystal formed in Cu-Ga-Mg-Sc alloys , 2002 .

[25]  T. Ishimasa,et al.  Icosahedral quasicrystal in annealed ZnMgSc alloys , 2001 .

[26]  J. Tartas,et al.  Predicting quasicrystals with quantum structural diagrams , 1991 .

[27]  D. Pettifor,et al.  Structure maps for. Pseudobinary and ternary phases , 1988 .

[28]  M. Matsushita,et al.  Formation of the icosahedral quasicrystalline phase in Zr70Pd30 binary glassy alloy , 2001 .

[29]  J. Haworth LVII. The effect of four transition metals on the α/β brass type of equilibrium , 1952 .

[30]  S. Roos,et al.  Formation of quasicrystals in bulk glass forming Zr–Cu–Ni–Al alloys , 1996 .

[31]  L. Pauling,et al.  The crystal structure of the metallic phase Mg32(Al, Zn)49 , 1957 .

[32]  A. Inoue,et al.  Stable Zn-Mg-rare-earth face-centred icosahedral alloys with pentagonal dodecahedral solidification morphology , 1994 .

[33]  Gerbrand Ceder,et al.  Automatic construction, implementation and assessment of Pettifor maps , 2003 .

[34]  A. Inoue,et al.  Icosahedral, Decagonal and Amorphous Phases in Al–Cu–M (M=Transition Metal) Systems , 1989 .

[35]  J. C. Phillips,et al.  New quasicrystals of alloys containing s, p, and d elements , 1987 .

[36]  K. Kelton,et al.  Icosahedral quasicrystal formation in Ti-Zr-based alloys and a new classification technique , 1998 .

[37]  D. G. Pettifor,et al.  A chemical scale for crystal-structure maps , 1984 .

[38]  J. Kasper,et al.  COMPLEX ALLOY STRUCTURES REGARDED AS SPHERE PACKINGS. I. DEFINITIONS AND BASIC PRINCIPLES , 1958 .

[39]  Yoshihiko Yokoyama,et al.  Stable Icosahedral Al–Pd–Mn and Al–Pd–Re Alloys , 1990 .

[40]  A. Tsai,et al.  Stable icosahedral quasicrystals in the Ag-In-Ca, Ag-In-Yb, Ag-In-Ca-Mg and Ag-In-Yb-Mg systems , 2002 .

[41]  S. Takeuchi,et al.  Formation of three types of quasicrystal in the Al-Pd-Mg system , 1993 .

[42]  K. Kuo,et al.  Hierarchic multishell structures with icosahedral symmetry , 2002 .

[43]  A. Tsai,et al.  Crystal and quasicrystal structures in Cd?Yb and Cd?Ca binary alloys , 2001 .

[44]  Chen,et al.  Icosahedral quasicrystals and quantum structural diagrams. , 1986, Physical review letters.

[45]  T. Ohsuna,et al.  Atom cluster arrangements in cubic approximant phases of icosahedral quasicrystals , 1998 .

[46]  K. Hono,et al.  Nanoquasicrystallization of binary Zr–Pd metallic glasses , 2000 .