Dissecting pollinator responses to a ubiquitous ultraviolet floral pattern in the wild

Summary Colour patterns on flowers can increase pollinator visitation and enhance foraging behaviour. Flowers uniform in colour to humans, however, can appear patterned to insects due to spatial variation in UV reflectance on petals. A UV ‘bullseye’ pattern that is common among angiosperms – UV-absorbing petal bases and UV-reflective apices – purportedly functions as a nectar guide, enhancing pollinator orientation and experimental evidence suggests that UV reflectance increases floral apparency to pollinators. We test the pollinator-attracting and pollinator-orienting functions of floral UV pattern and UV reflectance under natural conditions. Specifically, we address whether UV reflection alone, or UV pattern influences small bee and syrphid fly attraction rates (approaching, landing and foraging visits), foraging rates, and likelihood of foraging and orienting to the centre of flowers, using Argentina anserina, a species whose flowers exhibit variability in the size of the UV bullseye. We manipulated UV properties while maintaining uniformly yellow petals to create three phenotypes – uniformly UV-absorptive, uniformly UV-reflective, and inversed bullseye (reflective bases and absorptive apices) and compared insect visitation and behaviour to control flowers with the common UV bullseye phenotype. The presence of UV pattern increased attraction rates by both bees and syrphid flies relative to either fully UV reflective or absorptive flowers. However, only in the inverse array did the bullseye phenotype elicit higher foraging rates than the test flower. Neither the presence of pattern, nor the reversal of the common pattern influenced the likelihood of pollinator foraging or orientating to the flowers' centre during a visit. We provide some of the first evidence to suggest that flowers with spatial variation in UV reflectance may be more conspicuous to insects than those with petals that uniformly absorb or reflect UV, all of which are naturally occurring phenotypes. Further, we verify that the most common UV pattern in nature increases insect attraction and foraging rate relative to the inverse pattern. Results confirm a distance apparency function of the UV bullseye, but we argue for reconsideration of the notion that pollinators benefit from this ubiquitous floral motif through enhanced foraging efficiency.

[1]  T. Ashman,et al.  Quantitative Variation, Heritability, and Trait Correlations for Ultraviolet Floral Traits in Argentina anserina (Rosaceae): Implications for Floral Evolution , 2013, International Journal of Plant Sciences.

[2]  Allan G. Ellis,et al.  Gender‐specific pollinator preference for floral traits , 2012 .

[3]  S. Johnson,et al.  Floral signposts: testing the significance of visual ‘nectar guides’ for pollinator behaviour and plant fitness , 2012, Proceedings of the Royal Society B: Biological Sciences.

[4]  Daniel R. Papaj,et al.  ‘X’ marks the spot: The possible benefits of nectar guides to bees and plants , 2011 .

[5]  Solitary and social bees as pollinators of Wahlenbergia (Campanulaceae): single-visit effectiveness, overnight sheltering and responses to flower colour , 2012, Arthropod-Plant Interactions.

[6]  K. Prudic,et al.  Developmental Plasticity in Sexual Roles of Butterfly Species Drives Mutual Sexual Ornamentation , 2011, Science.

[7]  Peter W. McOwan,et al.  FReD: The Floral Reflectance Database — A Web Portal for Analyses of Flower Colour , 2010, PloS one.

[8]  D. Campbell,et al.  Flower color influences insect visitation in alpine New Zealand. , 2010, Ecology.

[9]  C. I. Peter,et al.  Mimics and magnets: the importance of color and ecological facilitation in floral deception. , 2008, Ecology.

[10]  J. Kohn,et al.  Environment and pollinator‐mediated selection on parapatric floral races of Mimulus aurantiacus , 2007, Journal of evolutionary biology.

[11]  Syafaruddin,et al.  Estimation of Heritability of the Nectar Guide of Flowers in Brassica rapa L. , 2006 .

[12]  S. Kawano,et al.  Spectral polymorphisms in angiosperm flowers determined by differential ultraviolet reflectance , 1975, The botanical magazine = Shokubutsu-gaku-zasshi.

[13]  S. Ninomiya,et al.  Intraspecific variation in the ultraviolet colour proportion of flowers in Brassica rapa L. , 2005 .

[14]  T. Ashman,et al.  The scent of a male: The role of floral volatiles in pollination of a gender dimorphic plant , 2005 .

[15]  H. Kugler Blütenökologische Untersuchungen mit Hummeln , 1930, Planta.

[16]  F. Frey OPPOSING NATURAL SELECTION FROM HERBIVORES AND PATHOGENS MAY MAINTAIN FLORAL‐COLOR VARIATION IN CLAYTONIA VIRGINICA (PORTULACACEAE) , 2004, Evolution; international journal of organic evolution.

[17]  K. Lunau The ecology and evolution of visual pollen signals , 2000, Plant Systematics and Evolution.

[18]  K. Lunau,et al.  Optical releasers of the innate proboscis extension in the hoverfly Eristalis tenax L. (Syrphidae, Diptera) , 1994, Journal of Comparative Physiology A.

[19]  K. Lunau,et al.  A new interpretation of flower guide colouration: Absorption of ultraviolet light enhances colour saturation , 1992, Plant Systematics and Evolution.

[20]  M. V. Price,et al.  The effect of nectar guides on pollinator preference: experimental studies with a montane herb , 1985, Oecologia.

[21]  Karl Daumer,et al.  Reizmetrische Untersuchung des Farbensehens der Bienen , 1956, Zeitschrift für vergleichende Physiologie.

[22]  R. Menzel,et al.  The spectral input systems of hymenopteran insects and their receptor-based colour vision , 2004, Journal of Comparative Physiology A.

[23]  M. Hertz Die Organisation des optischen Feldes bei der Biene. I. , 2004, Zeitschrift für vergleichende Physiologie.

[24]  S. Johnson,et al.  A simple field method for manipulating ultraviolet reflectance of flowers , 2002 .

[25]  R. Currie,et al.  Discrimination and preferences for pollen-based cues by foraging honeybees, Apis mellifera L. , 2002, Animal Behaviour.

[26]  T. Eisner,et al.  Attractive and defensive functions of the ultraviolet pigments of a flower (Hypericum calycinum) , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  K. Lunau,et al.  How drone flies (Eristalis tenax L., Syrphidae, Diptera) use floral guides to locate food sources. , 2001, Journal of insect physiology.

[28]  L. Chittka,et al.  Limits to the salience of ultraviolet: lessons from colour vision in bees and birds. , 2001, The Journal of experimental biology.

[29]  L. Romero,et al.  Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. , 2001, Plant science : an international journal of experimental plant biology.

[30]  L. Chittka,et al.  The evolution of color vision in insects. , 2001, Annual review of entomology.

[31]  T. Ashman POLLINATOR SELECTIVITY AND ITS IMPLICATIONS FOR THE EVOLUTION OF DIOECY AND SEXUAL DIMORPHISM , 2000 .

[32]  D. Schemske,et al.  Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[33]  L. Chittka,et al.  Floral colour diversity in plant communities, bee colour space and a null model , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[34]  D. Campbell,et al.  ADAPTIVE SIGNIFICANCE OF FLOWER COLOR AND INTER‐TRAIT CORRELATIONS IN AN IPOMOPSIS HYBRID ZONE , 1998, Evolution; international journal of organic evolution.

[35]  A. Dafni,et al.  Response of bee‐flies to the shape and pattern of model flowers: implications for floral evolution in a Mediterranean herb , 1998 .

[36]  Victor Gaba,et al.  Higher plants and UV-B radiation: balancing damage, repair and acclimation , 1998 .

[37]  George Adrian Horridge,et al.  Shape vision in bees: innate preference for flower-like patterns , 1995 .

[38]  J. Gingras,et al.  Complementary Aspects of Strawberry Pollination by Honey and IndigenQus Bees (Hymenoptera) , 1993 .

[39]  R. Wein,et al.  The biology of Canadian weeds. 98 Potentilla anserina L. , 1991 .

[40]  C. Galen MEASURING POLLINATOR‐MEDIATED SELECTION ON MORPHOMETRIC FLORAL TRAITS: BUMBLEBEES AND THE ALPINE SKY PILOT, POLEMONIUM VISCOSUM , 1989, Evolution; international journal of organic evolution.

[41]  L. Rieseberg,et al.  Floral flavonoids and ultraviolet patterns in Viguiera (Compositae) , 1985 .

[42]  Stephan D. Flint,et al.  Internal filters: Prospects for UV‐acclimation in higher plants , 1983 .

[43]  M. V. Price,et al.  Pollinator behaviour and natural selection for flower colour in Delphinium nelsonii , 1983, Nature.

[44]  T. Laverty The flower-visiting behaviour of bumble bees: floral complexity and learning. , 1980 .

[45]  G. A. Mulligan The biology of Canadian weeds , 1979 .

[46]  R. Scogin Floral UV-Absorption Patterns and Anthochlor Pigments in the Asteraceae , 1978 .

[47]  G A Horridge,et al.  Fly photoreceptors - II. Spectral and polarized light sensitivity in the drone fly Eristalis , 1975, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[48]  P. R. Atsatt,et al.  Frequency of Reflection and Absorption of Ultraviolet Light in Flowering Plants , 1975 .

[49]  C. Jones,et al.  Ultraviolet floral patterns as functional orientation cues in hymenopterous pollination systems , 1974 .

[50]  T. Eisner,et al.  Plant Taxonomy: Ultraviolet Patterns of Flowers Visible as Fluorescent Patterns in Pressed Herbarium Specimens , 1973, Science.

[51]  R. Cruden POLLINATION BIOLOGY OF NEMOPHILA MENZIESII (HYDROPHYLLACEAE) WITH COMMENTS ON THE EVOLUTION OF OLIGOLECTIC BEES , 1972, Evolution; international journal of organic evolution.

[52]  T. Eisner,et al.  Flavonols: Pigments Responsible for Ultraviolet Absorption in Nectar Guide of Flower , 1972, Science.

[53]  Yoel Cohen,et al.  ULTRAVIOLET REFLECTANCE CHARACTERISTICS IN FLOWERS OF CRUCIFERS , 1972 .

[54]  J. Free Effect of Flower Shapes and Nectar Guides On the Behaviour of Foraging Honeybees , 1970 .

[55]  A. Manning,et al.  The Effect of Honey-Guides , 1956 .