Robust Nonlinear Controls of Model-Scale Helicopters Under Lateral and Vertical Wind Gusts

A helicopter maneuvers naturally in an environment where the execution of the task can easily be affected by atmospheric turbulence, which leads to variations of its model parameters. This paper discusses the nature of the disturbances acting on the helicopter and proposes an approach to counter the effects. The disturbance consists of vertical and lateral wind gusts. A 7-degrees-of-freedom (DOF) nonlinear Lagrangian model with unknown disturbances is used. The model presents quite interesting control challenges due to nonlinearities, aerodynamic forces, under actuation, and its non-minimum phase dynamics. Two approaches of robust control are compared via simulations with a Tiny CP3 helicopter model: an approximate feedback linearization and an active disturbance rejection control using the approximate feedback linearization procedure. Several simulations show that adding an observer can compensate the effect of disturbances. The proposed controller has been tested in a real-time application to control the yaw angular displacement of a Tiny CP3 mini-helicopter mounted on an experiment platform.

[1]  Tong Heng Lee,et al.  Modeling and Control of the Yaw Channel of a UAV Helicopter , 2008, IEEE Transactions on Industrial Electronics.

[2]  Franck Plestan,et al.  Robust control of an autonomous reduced scale helicopter in presence of wind gusts , 2006 .

[3]  Gildas Besancon,et al.  Nonlinear observers and applications , 2007 .

[4]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[5]  Gabriel Abba,et al.  Robust and active trajectory tracking for an autonomous helicopter under wind gust , 2008, ICINCO-RA.

[6]  Vadim I. Utkin,et al.  Sliding Modes and their Application in Variable Structure Systems , 1978 .

[7]  Astrom Computer Controlled Systems , 1990 .

[8]  Cédric Join,et al.  Non-linear estimation is easy , 2007, Int. J. Model. Identif. Control..

[9]  Gabriel Abba,et al.  Dynamic Modelling and Stability Analysis of Model-Scale Helicopters Under Wind Gust , 2009, J. Intell. Robotic Syst..

[10]  S. Sastry,et al.  Output tracking control design of a helicopter model based on approximate linearization , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[11]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[12]  Bernard Mettler,et al.  System identification modeling of a small-scale unmanned rotorcraft for flight control design , 2002 .

[13]  Guowei Cai,et al.  Comprehensive Modeling and Control of the Yaw Dynamics of a UAV Helicopter , 2006, 2006 Chinese Control Conference.

[14]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[15]  Emilio Frazzoli,et al.  Trajectory tracking control design for autonomous helicopters using a backstepping algorithm , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[16]  S. Elaydi An introduction to difference equations , 1995 .

[17]  Mohammed M'Saad,et al.  Observer design for a class of MIMO nonlinear systems , 2004, Autom..

[18]  Yacine Chitour,et al.  Time-varying high-gain observers for numerical differentiation , 2002, IEEE Trans. Autom. Control..

[19]  Zhiqiang Gao,et al.  Active disturbance rejection control for web tension regulation , 2001 .

[20]  Raymond W. Prouty,et al.  Helicopter performance, stability, and control , 1986 .

[21]  Tarek Hamel,et al.  Hover control via Lyapunov control for an autonomous model helicopter , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[22]  Bernard Brogliato,et al.  Nonlinear modelling and control of helicopters , 2003, Autom..

[23]  S. Shankar Sastry,et al.  Nonlinear control design for slightly non-minimum phase systems: Application to V/STOL aircraft , 1992, Autom..

[24]  Hicham Medromi,et al.  Robust Nonlinear Control of a Miniature Autonomous Helicopter using Sliding Mode Control Structure , 2007 .

[25]  H. Nijmeijer,et al.  New directions in nonlinear observer design , 1999 .

[26]  Gabriel Abba,et al.  Robust nonlinear control and stability analysis of a 7DOF model-scale helicopter under vertical wind gust , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Zhiqiang Gao,et al.  An application of nonlinear PID control to a class of truck ABS problems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[28]  Avrdec,et al.  Flight Test Identification Of SH-2G Dynamics In Support Of Digital Flight Control System Development , 1999 .

[29]  D. Mayne Nonlinear and Adaptive Control Design [Book Review] , 1996, IEEE Transactions on Automatic Control.

[30]  A. Isidori Nonlinear Control Systems , 1985 .

[31]  Thibault Cheviron Contribution à la modélisation, à la commande et à l'observation de systèmes à entrées inconnues dans le cadre des systèmes volants autonomes , 2008 .

[32]  Rogelio Lozano,et al.  Modélisation et commande d'hélicoptères de petite taille , 1999 .

[33]  P. Bendotti,et al.  Identification and control of a model helicopter in hover , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[34]  Franck Plestan,et al.  A robust guidance and control scheme of an autonomous scale helicopter in presence of wind gusts , 2009, Int. J. Control.

[35]  Salim Ibrir Methodes numeriques pour l'observation et la commande des systemes non lineaires , 2000 .

[36]  T. Hamel,et al.  Hovering flight stabilization in wind gusts for ducted fan UAV , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[37]  Jing-Qing Han,et al.  Nonlinear design methods for control systems , 1999 .

[38]  Bernard Gimonet,et al.  A systematic approach to nonlinear rotorcraft model identification , 2002 .