Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies

[1]  Giorgio Graditi,et al.  Technical and cost analyses of two different heat storage systems for residential micro-CHP plants , 2014 .

[2]  Lingfeng Wang,et al.  Smart charging and appliance scheduling approaches to demand side management , 2014 .

[3]  Marc A. Rosen,et al.  Energy analysis of thermal energy storages with grid configurations , 2014 .

[4]  Fu Xiao,et al.  An interactive building power demand management strategy for facilitating smart grid optimization , 2014 .

[5]  Evangelos Rikos,et al.  Use of model predictive control for experimental microgrid optimization , 2014 .

[6]  Kelum A. A. Gamage,et al.  Demand side management in smart grid: A review and proposals for future direction , 2014 .

[7]  Pierluigi Siano,et al.  Demand response and smart grids—A survey , 2014 .

[8]  Pedro Faria,et al.  Day-ahead resource scheduling including demand response for electric vehicles , 2013, 2014 IEEE PES General Meeting | Conference & Exposition.

[9]  Giovanni Ferrara,et al.  Influence of the heat storage size on the plant performance in a Smart User case study , 2013 .

[10]  Xiandong Ma,et al.  Generic model of a community-based microgrid integrating wind turbines, photovoltaics and CHP generations , 2013 .

[11]  Francesco Melino,et al.  Performance analysis of an integrated CHP system with thermal and Electric Energy Storage for residential application , 2013 .

[12]  P. G. Taylor,et al.  Developing pathways for energy storage in the UK using a coevolutionary framework , 2013 .

[13]  Glenn Platt,et al.  Renewable energy aggregation with intelligent battery controller , 2013 .

[14]  Francesco Piazza,et al.  Hybrid soft computing algorithmic framework for smart home energy management , 2013, Soft Comput..

[15]  Francesco Piazza,et al.  Optimal Home Energy Management Under Dynamic Electrical and Thermal Constraints , 2013, IEEE Transactions on Industrial Informatics.

[16]  Siddharth Suryanarayanan,et al.  Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior , 2013, Proceedings of the IEEE.

[17]  Shuang Gao,et al.  Opportunities and Challenges of Vehicle-to-Home, Vehicle-to-Vehicle, and Vehicle-to-Grid Technologies , 2013, Proceedings of the IEEE.

[18]  Derong Liu,et al.  Action dependent heuristic dynamic programming for home energy resource scheduling , 2013 .

[19]  Thomas Nuytten,et al.  Flexibility of a combined heat and power system with thermal energy storage for district heating , 2013 .

[20]  Anastasios I. Dounis,et al.  Intelligent demand side energy management system for autonomous polygeneration microgrids , 2013 .

[21]  Fabio Polonara,et al.  Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems , 2013 .

[22]  Y. Baghzouz,et al.  Genetic-Algorithm-Based Optimization Approach for Energy Management , 2013, IEEE Transactions on Power Delivery.

[23]  Yaodong Wang,et al.  A domestic CHP system with hybrid electrical energy storage , 2012 .

[24]  Antonio Lecuona,et al.  Domestic hot water consumption vs. solar thermal energy storage: The optimum size of the storage tank , 2012 .

[25]  Alessandro Di Giorgio,et al.  An event driven Smart Home Controller enabling consumer economic saving and automated Demand Side Management , 2012 .

[26]  Maria Letizia Corradini,et al.  Minimal Resource Allocating Networks for Discrete Time Sliding Mode Control of Robotic Manipulators , 2012, IEEE Transactions on Industrial Informatics.

[27]  P. Ferrao,et al.  The impact of demand side management strategies in the penetration of renewable electricity , 2012 .

[28]  Fabio Polonara,et al.  State of the art of thermal storage for demand-side management , 2012 .

[29]  Dan Ton,et al.  Prospects for Renewable Energy: Meeting the Challenges of Integration with Storage , 2012 .

[30]  Luke Reedman,et al.  Realizing the Potential of Renewable and Distributed Generation , 2012 .

[31]  Jonathan Currie,et al.  Opti: Lowering the Barrier Between Open Source Optimizers and the Industrial MATLAB User , 2012 .

[32]  Sauro Longhi,et al.  On-line steam production prediction for a municipal solid waste incinerator by fully tuned minimal RBF neural networks , 2011 .

[33]  Giuseppina Ciulla,et al.  THE REDESIGN OF AN ITALIAN BUILDING TO REACH NET ZERO ENERGY PERFORMANCES: A CASE STUDY OF THE SHC TASK 40 ECBCS Annex 52 , 2011 .

[34]  Giuseppina Ciulla,et al.  A NET ZERO ENERGY BUILDING IN ITALY: DESIGN STUDIES TO REACH THE NET ZERO ENERGY TARGET , 2011 .

[35]  Nirmal-Kumar C. Nair,et al.  Battery energy storage systems: Assessment for small-scale renewable energy integration , 2010 .

[36]  Ahmed Elhajjaji,et al.  Daily energy planning of a household photovoltaic panel , 2010 .

[37]  Andreas Poullikkas,et al.  Overview of current and future energy storage technologies for electric power applications , 2009 .

[38]  S. Chowdhury,et al.  Microgrids and Active Distribution Networks , 2009 .

[39]  K. C. Divya,et al.  Battery Energy Storage Technology for power systems-An overview , 2009 .

[40]  Morten Boje Blarke,et al.  The effectiveness of storage and relocation options in renewable energy systems , 2008 .

[41]  Maher Chaabene,et al.  Multi-criteria fuzzy algorithm for energy management of a domestic photovoltaic panel , 2008 .

[42]  Willett Kempton,et al.  Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy , 2005 .

[43]  N. Sundararajan,et al.  Fully Tuned Radial Basis Function Neural Networks for Flight Control , 2002, The Springer International Series on Asian Studies in Computer and Information Science.

[44]  Narasimhan Sundararajan,et al.  Stable Neuro-Flight-Controller Using Fully Tuned Radial Basis Function Neural Networks , 2001 .

[45]  Paramasivan Saratchandran,et al.  Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm , 1998, IEEE Trans. Neural Networks.