Evaluation of human brain aging via diffusion structural characteristics

Diffusion tensor imaging (DTI) is a novel imaging technique, which can evaluate the variation of white matter micro-structure in brain aging. Four network properties of characteristic path length (L<inf>p</inf>), clustering coefficient (C<inf>p</inf>), global efficiency (E<inf>global</inf>), local efficiency (E<inf>local</inf>) were measured for the whole brain (WB) and specific cortex between the young and the old one. The results showed that E<inf>global</inf> decreased and L<inf>p</inf>, C<inf>p</inf>, E<inf>local</inf> increased with the aging. We draw a conclusion that the chosen parameters of L<inf>p</inf>, C<inf>p</inf>, E<inf>global</inf>, E<inf>local</inf> could evaluate the white matter (WM) variation correlated with the brain aging. It used as gold markers for the changes of WB structure.

[1]  Nitish Thakor,et al.  Progressive Gender Differences of Structural Brain Networks in Healthy Adults: A Longitudinal, Diffusion Tensor Imaging Study , 2015, PloS one.

[2]  S. Mori,et al.  Principles of Diffusion Tensor Imaging and Its Applications to Basic Neuroscience Research , 2006, Neuron.

[3]  T. Prescott,et al.  The brainstem reticular formation is a small-world, not scale-free, network , 2006, Proceedings of the Royal Society B: Biological Sciences.

[4]  Hiroshi Fukuda,et al.  A longitudinal study of structural brain network changes with normal aging , 2013, Front. Hum. Neurosci..

[5]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[6]  Alan C. Evans,et al.  Human Cortical Anatomical Networks Assessed by Structural MRI , 2008, Brain Imaging and Behavior.

[7]  Pengfei Xu,et al.  PANDA: a pipeline toolbox for analyzing brain diffusion images , 2013, Front. Hum. Neurosci..

[8]  Alan C. Evans,et al.  Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. , 2009, Cerebral cortex.

[9]  Yong He,et al.  GRETNA: a graph theoretical network analysis toolbox for imaging connectomics , 2015, Front. Hum. Neurosci..

[10]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[11]  Arthur W. Toga,et al.  Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template , 2008, NeuroImage.

[12]  Paul J. Laurienti,et al.  Changes in Brain Network Efficiency and Working Memory Performance in Aging , 2015, PloS one.

[13]  Adam Schwebach,et al.  Diffusion Tensor Imaging , 2008 .

[14]  Lester Melie-García,et al.  Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory , 2008, NeuroImage.

[15]  Yong He,et al.  BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics , 2013, PloS one.

[16]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[17]  Edward T. Bullmore,et al.  Whole-brain anatomical networks: Does the choice of nodes matter? , 2010, NeuroImage.