Probabilistic Generative Deep Learning for Molecular Design

Probabilistic generative deep learning for molecular design involves the discovery and design of new molecules and analysis of their structure, properties and activities by probabilistic generative models using the deep learning approach. It leverages the existing huge databases and publications of experimental results, and quantum-mechanical calculations, to learn and explore molecular structure, properties and activities. We discuss the major components of probabilistic generative deep learning for molecular design, which include molecular structure, molecular representations, deep generative models, molecular latent representations and latent space, molecular structure-property and structure-activity relationships, molecular similarity and molecular design. We highlight significant recent work using or applicable to this new approach.

[1]  N. Nikolova,et al.  International Union of Pure and Applied Chemistry, LUMO energy ± The Lowest Unoccupied Molecular Orbital (LUMO) , 2022 .

[2]  Cao Xiao,et al.  Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders , 2018, NeurIPS.

[3]  Mohammad Rostami,et al.  Discovering Molecular Functional Groups Using Graph Convolutional Neural Networks , 2018, ArXiv.

[4]  Alán Aspuru-Guzik,et al.  Convolutional Networks on Graphs for Learning Molecular Fingerprints , 2015, NIPS.

[5]  Robert Abel,et al.  Molecular Structure Extraction From Documents Using Deep Learning , 2018, J. Chem. Inf. Model..

[6]  Steven Skiena,et al.  Syntax-Directed Variational Autoencoder for Structured Data , 2018, ICLR.

[7]  Qi Liu,et al.  Constrained Graph Variational Autoencoders for Molecule Design , 2018, NeurIPS.

[8]  Benoit Gaüzère,et al.  A new hypergraph molecular representation , 2013 .

[9]  Vijay S. Pande,et al.  Molecular graph convolutions: moving beyond fingerprints , 2016, Journal of Computer-Aided Molecular Design.

[10]  Noel M. O'Boyle,et al.  DeepSMILES: An Adaptation of SMILES for Use in Machine-Learning of Chemical Structures , 2018 .

[11]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[12]  Arzucan Özgür,et al.  A comparative study of SMILES-based compound similarity functions for drug-target interaction prediction , 2016, BMC Bioinformatics.

[13]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..

[14]  Abhinav Vishnu,et al.  SMILES2Vec: An Interpretable General-Purpose Deep Neural Network for Predicting Chemical Properties , 2017, ArXiv.

[15]  Daniel T. Chang,et al.  Latent Variable Modeling for Generative Concept Representations and Deep Generative Models , 2018, ArXiv.

[16]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[17]  Ole Winther,et al.  Deep Generative Models for Molecular Science , 2018, Molecular informatics.

[18]  Matt J. Kusner,et al.  Grammar Variational Autoencoder , 2017, ICML.

[19]  Regina Barzilay,et al.  Junction Tree Variational Autoencoder for Molecular Graph Generation , 2018, ICML.

[20]  Samy Bengio,et al.  Generating Sentences from a Continuous Space , 2015, CoNLL.

[21]  Philip S. Yu,et al.  A Comprehensive Survey on Graph Neural Networks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[22]  Seongok Ryu,et al.  Deeply learning molecular structure-property relationships using graph attention neural network , 2018, ArXiv.

[23]  Daniel T. Chang,et al.  Concept-Oriented Deep Learning , 2018, ArXiv.

[24]  Lei Jia,et al.  Chemi-net: a graph convolutional network for accurate drug property prediction , 2018, ArXiv.

[25]  Michalis Vazirgiannis,et al.  Message Passing Graph Kernels , 2018, ArXiv.

[26]  Nikolaos V. Sahinidis,et al.  Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques , 2016, ArXiv.

[27]  Daniel T. Chang,et al.  Concept-Oriented Deep Learning , 2018, ArXiv.

[28]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.