On the Integrability of Two-Dimensional Flows

This paper deals with the notion of integrability of flows or vector fields on two-dimensional manifolds. We consider the following two key points about first integrals: (1) They must be defined on the whole domain of definition of the flow or vector field, or defined on the complement of some special orbits of the system; (2) How are they computed? We prove that every local flow ϕ on a two-dimensional manifold M always has a continuous first integral on each component of M\Σ where Σ is the set of all separatrices of ϕ. We consider the inverse integrating factor and we show that it is better to work with it instead of working directly with a first integral or an integrating factor for studying the integrability of a given two-dimensional flow or vector field. Finally, we prove the existence and uniqueness of an analytic inverse integrating factor in a neighborhood of a strong focus, of a non-resonant hyperbolic node, and of a Siegel hyperbolic saddle.

[1]  R. Kooij,et al.  Algebraic invariant curves and the integrability of polynomial systems , 1993 .

[2]  L. Markus Global structure of ordinary differential equations in the plane , 1954 .

[3]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[4]  Jaume Llibre,et al.  The shape of limit cycles that bifurcate from non-Hamiltonian centers , 2001 .

[5]  Global structure of continuous flows on 2-manifolds , 1976 .

[6]  D. A. Neumann Classification of continuous flows on 2-manifolds , 1975 .

[7]  Giacomini,et al.  Determination of limit cycles for two-dimensional dynamical systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  C. Christopher Invariant algebraic curves and conditions for a centre , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[9]  Javier Chavarriga,et al.  Integrable systems in the plane with center type linear part , 1994 .

[10]  Jaume Giné,et al.  THE NULL DIVERGENCE FACTOR , 1997 .

[11]  G. Darboux,et al.  Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré , 1878 .

[12]  S. Chow,et al.  Normal Forms and Bifurcation of Planar Vector Fields , 1994 .

[13]  Jaume Llibre,et al.  On the nonexistence, existence and uniqueness of limit cycles , 1996 .

[14]  Luisa Mazzi,et al.  A CHARACTERIZATION OF CENTRES VIA FIRST INTEGRALS , 1988 .

[15]  J. Chavarriga,et al.  Isochronous centers of cubic reversible systems , 1999 .

[16]  J. Giné,et al.  Local integrability for nilpotent critical point , 1999 .

[17]  J. Jouanolou,et al.  Equations de Pfaff algébriques , 1979 .

[18]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[19]  J. Llibre,et al.  Integrability and Algebraic Solutions for Planar Polynomial Differential Systems with Emphasis on the Quadratic Systems , 1998 .

[20]  Vladimir Igorevich Arnolʹd,et al.  Équations différentielles ordinaires , 1974 .

[21]  Jaume Llibre,et al.  On the shape of limit cycles that bifurcate from Hamiltonian centers , 2000 .