Formation of commercially pure titanium with a bimodal nitrogen diffusion phase using plasma nitriding and spark plasma sintering

[1]  Y. Nakai,et al.  Fractographic analysis of fatigue crack initiation and propagation in CP titanium with a bimodal harmonic structure , 2018 .

[2]  Y. Nakai,et al.  Statistical fatigue properties and small fatigue crack propagation in bimodal harmonic structured Ti-6Al-4V alloy under four-point bending , 2018 .

[3]  Y. Nakai,et al.  Evaluation of near-threshold fatigue crack propagation in harmonic-structured CP titanium with a bimodal grain size distribution , 2017 .

[4]  A. Ueno,et al.  Effect of bimodal grain size distribution on fatigue properties of Ti-6Al-4V alloy with harmonic structure under four-point bending , 2017 .

[5]  L. Bolzoni,et al.  Understanding the properties of low-cost iron-containing powder metallurgy titanium alloys , 2016 .

[6]  Y. Nakai,et al.  Effect of harmonic structure design with bimodal grain size distribution on near-threshold fatigue crack propagation in Ti–6Al–4V alloy , 2016 .

[7]  Yifu Shen,et al.  Nitriding of Fe–18Cr–8Mn stainless steel powders by mechanical alloying method with dual nitrogen source , 2016 .

[8]  J. Umeda,et al.  Strengthening behaviour and mechanisms of extruded powder metallurgy pure Ti materials reinforced with ubiquitous light elements , 2016 .

[9]  潤 小茂鳥,et al.  Ti-6Al-4V 合金の大気酸化挙動に及ぼす微粒子ピーニングの影響 , 2015 .

[10]  A. Ueno,et al.  Low Temperature Nitriding of Commercially Pure Titanium with Harmonic Structure , 2015 .

[11]  Y. Nakai,et al.  Evaluation of near-threshold fatigue crack propagation in Ti-6Al-4V Alloy with harmonic structure created by Mechanical Milling and Spark Plasma Sintering , 2015 .

[12]  D. Eifler,et al.  Evaluation of Very High Cycle Fatigue Properties of Low Temperature Nitrided Ti-6Al-4V Alloy Using Ultrasonic Testing Technology , 2015 .

[13]  J. Umeda,et al.  Titanium Powders via Gas-Solid Direct Reaction Process and Mechanical Properties of Their Extruded Materials , 2015 .

[14]  K. Ameyama,et al.  The Development of High Performance Ti-6Al-4V Alloy via a Unique Microstructural Design with Bimodal Grain Size Distribution , 2015, Metallurgical and Materials Transactions A.

[15]  A. Edrisy,et al.  Fatigue improvement in low temperature plasma nitrided Ti–6Al–4V alloy , 2015 .

[16]  A. Ueno,et al.  Development of Low Temperature Nitriding Process and its Effects on the 4-Points Bending Fatigue Properties of Commercially Pure Titanium , 2014 .

[17]  Jian Sun,et al.  Low-temperature plasma nitriding of titanium layer on Ti/Al clad sheet , 2013 .

[18]  A. Edrisy,et al.  Scratch resistance analysis of plasma-nitrided Ti–6Al–4V alloy , 2013 .

[19]  K. S. Mohammed,et al.  Sintering Behavior and Microstructure Evolution of Mechanically Alloyed W-Bronze Composite Powders by Two-step Ball Milling Process , 2013 .

[20]  J. Umeda,et al.  Wear Behavior of Network-Structured Carbon Nanotube Coating on Titanium Substrate , 2012 .

[21]  In-Gyu Park,et al.  Micro-dimpled surface by ultrasonic nanocrystal surface modification and its tribological effects , 2012 .

[22]  S. Raman,et al.  Effect of Plasma Nitriding Environment and Time on Plain Fatigue and Fretting Fatigue Behavior of Ti–6Al–4V , 2010 .

[23]  K. Ameyama,et al.  Mechanical properties of pure titanium and Ti-6Al-4V alloys with a new tailored nano/meso hybrid microstructure , 2009 .

[24]  Nishant M. Tikekar,et al.  Tribology of titanium boride-coated titanium balls against alumina ceramic: Wear, friction, and micromechanisms , 2008 .

[25]  Min Zhou,et al.  Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering , 2008 .

[26]  V. Leskovšek,et al.  Sliding wear of titanium nitride thin films deposited on Ti–6Al–4V alloy by PVD and plasma nitriding processes , 2006 .

[27]  Hongbiao Dong,et al.  Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment , 2000 .

[28]  A. Batchelor,et al.  Some considerations on the mitigation of fretting damage by the application of surface-modification technologies , 2000 .

[29]  H. Rack,et al.  Titanium alloys in total joint replacement--a materials science perspective. , 1998, Biomaterials.

[30]  E. Akiba,et al.  Preparation of the hydrides Mg2FeH6 and Mg2CoH5 by mechanical alloying followed by sintering , 1997 .

[31]  Kenneth Holmberg,et al.  Coatings tribology: a concept, critical aspects and future directions , 1994 .

[32]  T. Ogawa,et al.  The effect of gas nitriding on fatigue behaviour in titanium alloys , 1994 .

[33]  A. Raveh Mechanisms of r.f. plasma nitriding of Ti-6Al-4V alloy , 1993 .

[34]  Kenneth G. Budinski,et al.  Tribological properties of titanium alloys , 1991 .

[35]  K. Ameyama,et al.  Application of High Pressure Gas Jet Mill Process to Fabricate High Performance Harmonic Structure Designed Pure Titanium , 2015 .

[36]  T. Morita,et al.  Effect of Hybrid Surface Treatment Composed of Plasma Nitriding and Fine Particle Bombarding on Fatigue Strength of Ti–6Al–4V Alloy , 2013 .

[37]  K. Ameyama,et al.  New Microstructure Design for Commercially Pure Titanium with Outstanding Mechanical Properties by Mechanical Milling and Hot Roll Sintering , 2010 .

[38]  H. Takahashi,et al.  FACTORS CONTROLLING THE FATIGUE STRENGTH OF NITRIDED TITANIUM , 1997 .