This work presents a novel approach to fine-tuning the size, shape, and interparticle spacing of nanoparticles fabricated by nanosphere lithography (NSL). This approach, termed angle-resolved nanosphere lithography (AR NSL), is a variant of NSL that yields vastly different, and increasingly flexible, nanostructures. This is accomplished by controlling the angle, θ, between the surface normal of the sample assembly and the propagation vector of the material deposition beam. Comparison of experimental results to simulated nanoparticle array geometries generated using an analytical model show excellent qualitative agreement. Using AR NSL, we have demonstrated that it is possible to reduce in-plane nanoparticle dimensions by a factor of 4. This important result shows that it will be possible to achieve fabrication of nanoparticles with precision control of their dimensions in a size regime comparable with the industry standard electron beam lithography. AR NSL provides a massively parallel, rather than serial...