Polarization matching design of InGaN-based semi-polar quantum wells—A case study of (112¯2) orientation

We present a theoretical study of the polarization engineering in semi-polar III-nitrides heterostructures. As a case study, we investigate the influence of GaN, AlGaN, and AlInN barrier material on the performance of semi-polar (112¯2) InGaN-based quantum wells (QWs) for blue (450 nm) and yellow (560 nm) emission. We show that the magnitude of the total built-in electric field across the QW can be controlled by the barrier material. Our results indicate that AlInN is a promising candidate to achieve (i) reduced wavelength shifts with increasing currents and (ii) strongly increased electron-hole wave function overlap, important for reduced optical recombination times.

[1]  E. O’Reilly,et al.  Built-in field control in alloyed c-plane III-N quantum dots and wells , 2011 .

[2]  G. Verzellesi,et al.  Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies , 2013 .

[3]  S. Denbaars,et al.  Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells , 2012 .

[4]  Jasprit Singh,et al.  Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting , 2009 .

[5]  Thomas Wunderer,et al.  Bright semipolar GaInN∕GaN blue light emitting diode on side facets of selectively grown GaN stripes , 2006 .

[6]  S. Denbaars,et al.  High-Power Blue-Violet Semipolar (202̄1̄) InGaN/GaN Light-Emitting Diodes with Low Efficiency Droop at 200 A/cm2 , 2011 .

[7]  S. Nakamura,et al.  Strain-induced polarization in wurtzite III-nitride semipolar layers , 2006 .

[8]  Eoin P. O'Reilly,et al.  Theory of local electric polarization and its relation to internal strain: Impact on polarization potential and electronic properties of group-III nitrides , 2013, 1309.3309.

[9]  R. Dupuis,et al.  Control of quantum-confined Stark effect in InGaN∕GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes , 2008 .

[10]  Shi You,et al.  Non-polar GaInN-based light-emitting diodes: an approach for wavelength-stable and polarized-light emitters , 2011, OPTO.

[11]  R. H. Jansen,et al.  Dielectric function and optical properties of Al-rich AlInN alloys pseudomorphically grown on GaN , 2010 .

[12]  Shinichi Tanaka,et al.  High-power, low-efficiency-droop semipolar (202̄1̄) single-quantum-well blue light-emitting diodes , 2012 .

[13]  M. Kisin,et al.  Semi‐polar nitride surfaces and heterostructures , 2011 .

[14]  P. J. Parbrook,et al.  Composition-Dependent Band Gap and Band-Edge Bowing in AlInN: A Combined Theoretical and Experimental Study , 2013, 1310.3947.

[15]  E. O’Reilly,et al.  Built-in field reduction in InGaN/GaN quantum dot molecules , 2011 .

[16]  S. Nakamura Current Status of GaN-Based Solid-State Lighting , 2009 .

[17]  Qimin Yan,et al.  Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN. , 2011, The Journal of chemical physics.

[18]  Shigeru Nakagawa,et al.  Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect , 1998 .

[19]  E. Fred Schubert,et al.  Origin of efficiency droop in GaN-based light-emitting diodes , 2007 .

[20]  H. Masui,et al.  Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges , 2010, IEEE Transactions on Electron Devices.

[21]  Michael R. Krames,et al.  Auger recombination in InGaN measured by photoluminescence , 2007 .

[22]  F. Scholz,et al.  Semipolar GaN grown on foreign substrates: a review , 2012 .

[23]  Y. Makarov,et al.  Modelling study of MQW LED operation , 2005 .

[24]  S. Denbaars,et al.  Green Semipolar (202̄1̄) InGaN Light-Emitting Diodes with Small Wavelength Shift and Narrow Spectral Linewidth , 2013 .