Prediction of the Sound Absorption Performance of Polymer Wool by Using Artificial Neural Networks Model

[1]  M. Monjezi,et al.  Simultaneous prediction of fragmentation and flyrock in blasting operation using artificial neural networks , 2010 .

[2]  Jong-Kuk Choi,et al.  Macrobenthos habitat potential mapping using GIS-based artificial neural network models. , 2013, Marine pollution bulletin.

[3]  Massimo Garai,et al.  A simple empirical model of polyester fibre materials for acoustical applications , 2005 .

[4]  N. Voronina,et al.  Acoustic properties of fibrous materials , 1994 .

[5]  Colin H. Hansen,et al.  Flow resistance information for acoustical design , 1980 .

[6]  E. N. Bazley,et al.  Acoustical properties of fibrous absorbent materials , 1970 .

[7]  Donna M. Rizzo,et al.  Advances in ungauged streamflow prediction using artificial neural networks , 2010 .

[8]  Julian Morris,et al.  A procedure for determining the topology of multilayer feedforward neural networks , 1994, Neural Networks.

[9]  Jian-Qiao Sun,et al.  Neural networks for prediction of acoustical properties of polyurethane foams , 2003 .

[10]  Ali Elkamel,et al.  Measurement and prediction of ozone levels around a heavily industrialized area: a neural network approach , 2001 .

[11]  Bharat A. Jain,et al.  Artificial Neural Network Models for Pricing Initial Public Offerings , 1995 .

[12]  Michael Y. Hu,et al.  Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis , 1999, Eur. J. Oper. Res..

[13]  Roman M. Balabin,et al.  Neural network (ANN) approach to biodiesel analysis: Analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy , 2011 .

[14]  Roberto Baccoli,et al.  Comparison between an artificial neural network and logistic regression in predicting acute graft-vs-host disease after unrelated donor hematopoietic stem cell transplantation in thalassemia patients. , 2010, Experimental hematology.

[15]  Yvan Champoux,et al.  Dynamic tortuosity and bulk modulus in air‐saturated porous media , 1991 .

[16]  Judith E. Dayhoff,et al.  Neural Network Architectures: An Introduction , 1989 .

[17]  Joel Koplik,et al.  Theory of dynamic permeability and tortuosity in fluid-saturated porous media , 1987, Journal of Fluid Mechanics.

[18]  Gregory R. Madey,et al.  The Application of Neural Networks and a Qualitative Response Model to the Auditor's Going Concern Uncertainty Decision* , 1995 .

[19]  Jian-Qiao Sun,et al.  Multi-stage regression analysis of acoustical properties of polyurethane foams , 2004 .

[20]  H. Aourag,et al.  Elastic constants of austenitic stainless steel: Investigation by the first-principles calculations and the artificial neural network approach , 2013 .

[21]  Soteris A. Kalogirou,et al.  Prediction of flat-plate collector performance parameters using artificial neural networks , 2006 .

[22]  Taha B. M. J. Ouarda,et al.  Comparison of ice-affected streamflow estimates computed using artificial neural networks and multiple regression techniques , 2008 .

[23]  Min-Der Lin,et al.  Estimating the sound absorption coefficients of perforated wooden panels by using artificial neural networks , 2009 .

[24]  Okan Ozgonenel,et al.  Artificial neural network (ANN) approach for modeling Zn(II) adsorption from leachate using a new biosorbent , 2011 .

[25]  Michael J. Shaw,et al.  A classification approach using multi-layered neural networks , 1994, Decis. Support Syst..

[26]  Wu Qunli Empirical relations between acoustical properties and flow resistivity of porous plastic open-cell foam , 1988 .

[27]  T. N. Singh,et al.  Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks , 2001 .