Efficient Delaunay Mesh Generation from Sampled Scalar Functions

Many modern research areas face the challenge of meshing level sets of sampled scalar functions. While many algorithms focus on ensuring geometric qualities of the output mesh, recent attention has been paid to building topologically accurate Delaunay conforming meshes of any level set from such volumetric data.

[1]  Joshua A. Levine,et al.  Delaunay Meshing of Isosurfaces , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).

[2]  Jindong Chen,et al.  Modeling with cubic A-patches , 1995, TOGS.

[3]  Günther Greiner,et al.  Hierarchical extraction of iso-surfaces with semi-regular meshes , 2002, SMA '02.

[4]  Chandrajit L. Bajaj,et al.  Secondary and Tertiary Structural Fold Elucidation from 3D EM Maps of Macromolecules , 2006, ICVGIP.

[5]  Mathieu Desbrun,et al.  Removing excess topology from isosurfaces , 2004, TOGS.

[6]  Tamal K. Dey,et al.  Delaunay Refinement for Piecewise Smooth Complexes , 2007, SODA '07.

[7]  Jacques-Olivier Lachaud Topologically defined iso-surfaces , 1996, DGCI.

[8]  E Chernyaev,et al.  Marching cubes 33 : construction of topologically correct isosurfaces , 1995 .

[9]  Jacques-Olivier Lachaud,et al.  Delaunay conforming iso-surface, skeleton extraction and noise removal , 2001, Comput. Geom..

[10]  Herbert Edelsbrunner,et al.  Triangulating Topological Spaces , 1997, Int. J. Comput. Geom. Appl..

[11]  Chandrajit L. Bajaj,et al.  Smooth Surface Constructions via a Higher-Order Level-Set Method , 2007, 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[12]  Fabrice Rouillier,et al.  An environment for Symbolic and Numeric Computation , 2002 .

[13]  J. Shewchuk,et al.  Isosurface stuffing: fast tetrahedral meshes with good dihedral angles , 2007, SIGGRAPH 2007.

[14]  David E. Breen,et al.  Semi-regular mesh extraction from volumes , 2000 .

[15]  Andrei Khodakovsky,et al.  Hybrid meshes: multiresolution using regular and irregular refinement , 2002, SCG '02.

[16]  Chandrajit L. Bajaj,et al.  Adaptive and quality 3D meshing from imaging data , 2003, SM '03.

[17]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[18]  M. Yvinec,et al.  Meshing Volumes Bounded by Smooth Surfaces , 2005, IMR.

[19]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[20]  勉 斎藤,et al.  D. Vandenberg : Being and Education, An Essay in Existential Phenomenology.(Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1971) , 1974 .

[21]  Andrew Gillette,et al.  Topology Based Selection and Curation of Level Sets , 2009, Topology-Based Methods in Visualization II.

[22]  L. Paul Chew,et al.  Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.

[23]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[24]  M. Yvinec,et al.  Variational tetrahedral meshing , 2005, SIGGRAPH 2005.

[25]  Tamal K. Dey,et al.  Sampling and Meshing a Surface with Guaranteed Topology and Geometry , 2007, SIAM J. Comput..

[26]  Ken Brodlie,et al.  Improving the Robustness and Accuracy of the Marching Cubes Algorithm for Isosurfacing , 2003, IEEE Trans. Vis. Comput. Graph..

[27]  B. Natarajan On generating topologically consistent isosurfaces from uniform samples , 1994, The Visual Computer.