Efficient resolution of 4-chlormandelic acid enantiomers using lipase@UiO-67(Zr) zirconium-organic frameworks in organic solvent.

A new biocatalyst PCL@UiO-67(Zr) was successfully synthesized by immobilized lipases on metal-organic frameworks (MOFs) materials. Compare with free lipases, zirconium foundation organic framework material UiO-67(Zr) modification on immobilized lipases Pseudomonas cepacia lipase (PCL) great boosts their enantioselectivity in the kinetic resolution racemic 4-chloro-mandelic acid (4-ClMA) on the organic solvent. The acquired bio-composite PCL@UiO-67(Zr) was fully characterized by powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy, N2 adsorption-desorption isotherm and aperture distribution map, and scanning electron microscopy (SEM). The catalytic performance of PCL@UiO-67(Zr), such as temperature, reaction time, and lipase quantity, were deeply explored. The experiment results showed resolution racemic 4-ClMA optimum conditions that 20 mmol/L of (R, S)-4-chloromandelic acid, 120 mmol/L vinyl acetate, 30-mg immobilized lipases PCL@UiO-67(Zr), 2 mL of MTBE, 500 rpm, and under the 55°C reaction 18 h. In this optimum conditions, c and eep could reach up to 47.6% and 98.7%, respectively.

[1]  K. Tang,et al.  Lipase immobilized onto metal–organic frameworks for enantioselective resolution of mandelic acid , 2022, Chemical Engineering & Technology.

[2]  Mustafa YILMAZ,et al.  L‐proline modified inactivated lipase and its immobilization on cellulose‐based material: stability and enantioselectivity , 2021, Journal of Chemical Technology & Biotechnology.

[3]  Mustafa Yılmaz,et al.  Preparation of One‐Pot Immobilized Lipase with Fe3O4 Nanoparticles Into Metal‐Organic Framework For Enantioselective Hydrolysis of (R,S)‐Naproxen Methyl Ester , 2021 .

[4]  Hao Wen,et al.  Metal/metal-organic framework interfacial ensemble-induced dual site catalysis towards hydrogen generation , 2021 .

[5]  L. Lv,et al.  The nature and catalytic reactivity of UiO-66 supported Fe3O4 nanoparticles provide new insights into Fe-Zr dual active centers in Fenton-like reactions , 2021 .

[6]  Peng Zhang,et al.  Enzyme-functionalized magnetic framework composite fabricated by one-pot encapsulation of lipase and Fe3O4 nanoparticle into metal–organic framework , 2021 .

[7]  Yu-Shun Yang,et al.  Covalently immobilize crude d-amino acid transaminase onto UiO-66-NH2 surface for d-Ala biosynthesis. , 2021, International journal of biological macromolecules.

[8]  M. Yılmaz,et al.  Calix[4]arene tetracarboxylic acid-treated lipase immobilized onto metal-organic framework: Biocatalyst for ester hydrolysis and kinetic resolution. , 2021, International journal of biological macromolecules.

[9]  K. Tang,et al.  Immobilization of lipase AYS on UiO-66-NH2 metal-organic framework nanoparticles as a recyclable biocatalyst for ester hydrolysis and kinetic resolution , 2020 .

[10]  K. Tang,et al.  PEG-modified lipase immobilized onto NH2-MIL-53 MOF for efficient resolution of 4-fluoromandelic acid enantiomers. , 2020, International journal of biological macromolecules.

[11]  K. Tang,et al.  Immobilization of lipase onto metal–organic frameworks for enantioselective hydrolysis and transesterification , 2020, AIChE Journal.

[12]  Guigen Li,et al.  Enantioselective assembly of multi-layer 3D chirality , 2019, National science review.

[13]  Baskar Thangaraj,et al.  Immobilization of Lipases – A Review. Part I: Enzyme Immobilization , 2019, ChemBioEng Reviews.

[14]  A. Khataee,et al.  Encapsulated cholesterol oxidase in metal-organic framework and biomimetic Ag nanocluster decorated MoS2 nanosheets for sensitive detection of cholesterol , 2018 .

[15]  Farnaz Zadehahmadi,et al.  Efficient biodiesel production using a lipase@ZIF-67 nanobioreactor , 2018 .

[16]  Parameswaran Binod,et al.  Strategies for design of improved biocatalysts for industrial applications. , 2017, Bioresource technology.

[17]  Hai‐Long Jiang,et al.  A Modulator-Induced Defect-Formation Strategy to Hierarchically Porous Metal-Organic Frameworks with High Stability. , 2017, Angewandte Chemie.

[18]  Ki‐Hyun Kim,et al.  Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates , 2016 .

[19]  Ning Li,et al.  Novel Nano-/Micro-Biocatalyst: Soybean Epoxide Hydrolase Immobilized on UiO-66-NH2 MOF for Efficient Biosynthesis of Enantiopure (R)-1, 2-Octanediol in Deep Eutectic Solvents , 2016 .

[20]  Jung-Min Choi,et al.  Industrial applications of enzyme biocatalysis: Current status and future aspects. , 2015, Biotechnology advances.

[21]  H. Toma,et al.  Kinetic resolution of a drug precursor by Burkholderia cepacia lipase immobilized by different methodologies on superparamagnetic nanoparticles , 2010 .

[22]  M. Gutarra,et al.  Highly enantioselective biocatalysts by coating immobilized lipases with polyethyleneimine , 2010 .

[23]  J. Somberg,et al.  Chiral Cardiovascular Drugs: An Overview , 2005, American journal of therapeutics.

[24]  E. Fogassy,et al.  Resolution of enantiomers by non-conventional methods , 2005 .

[25]  G. Koren,et al.  Stereoselective pharmacokinetics of mefloquine in healthy Caucasians after multiple doses. , 1994, Journal of pharmaceutical sciences.