Adaptive Low Rank Approximation for Tensors

In this paper, we propose a novel framework for finding low rank approximation of a given tensor. This framework is based on the adaptive lasso with coefficient weights for sparse computation in tensor rank detection. We also provide an algorithm for solving the adaptive lasso model problem for tensor approximation. In a special case, the convergence of the algorithm and the probabilistic consistency of the sparsity have been addressed [15] when each weight equals to one. The method is applied to background extraction and video compression problems.

[1]  Carla D. Martin,et al.  An Order-p Tensor Factorization with Applications in Imaging , 2013, SIAM J. Sci. Comput..

[2]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[3]  Pierre Comon,et al.  Nonnegative approximations of nonnegative tensors , 2009, ArXiv.

[4]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[5]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[6]  Wotao Yin,et al.  A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion , 2013, SIAM J. Imaging Sci..

[7]  Thierry Bouwmans,et al.  Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance , 2014, Comput. Vis. Image Underst..

[8]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[9]  Hongtu Zhu,et al.  Tensor Regression with Applications in Neuroimaging Data Analysis , 2012, Journal of the American Statistical Association.

[10]  Marc Teboulle,et al.  Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2013, Mathematical Programming.

[11]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[12]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[13]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[14]  Wen Gao,et al.  Background Subtraction via generalized fused lasso foreground modeling , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Cun-Hui Zhang,et al.  Adaptive Lasso for sparse high-dimensional regression models , 2008 .

[16]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[17]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[18]  Lieven De Lathauwer,et al.  Canonical Polyadic Decomposition of Third-Order Tensors: Reduction to Generalized Eigenvalue Decomposition , 2013, SIAM J. Matrix Anal. Appl..

[19]  Misha Elena Kilmer,et al.  Facial Recognition Using Tensor-Tensor Decompositions , 2013, SIAM J. Imaging Sci..

[20]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.