Symmetry-adapted perturbation-theory calculations of intermolecular forces employing density-functional description of monomers.

A symmetry-adapted perturbation theory based on Kohn-Sham determinants [SAPT(KS)] and utilizing asymptotically corrected exchange-correlation potentials has been applied to the He2, Ne2, (H2O)2, and (CO2)2 dimers. It is shown that SAPT(KS) is able to recover the electrostatic, first-order exchange, second-order induction, and exchange-induction energies with an accuracy approaching and occasionally surpassing that of regular SAPT at the currently programmed theory level. The use of the asymptotic corrections is critical to achieve this accuracy. The SAPT(KS) results can be obtained at a small fraction of the time needed for regular SAPT calculations. The robustness of the SAPT(KS) method with respect to the basis set size is also demonstrated. A theoretical justification for high accuracy of SAPT(KS) predictions for the electrostatic, first-order exchange, and second-order induction energies has been provided.

[1]  Sl,et al.  Many‐body theory of intermolecular induction interactions , 1994 .

[2]  Handy,et al.  Determination of frequency-dependent polarizabilities using current density-functional theory. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[3]  Dmitrii E. Makarov,et al.  van der Waals Energies in Density Functional Theory , 1998 .

[4]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[5]  K. Szalewicz,et al.  On the Performance of Bond Functions and Basis Set Extrapolation Techniques in High-Accuracy Calculations of Interatomic Potentials. A Helium Dimer Study , 2003 .

[6]  R. Leeuwen,et al.  Exchange-correlation potential with correct asymptotic behavior. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[7]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[8]  William J. Meath,et al.  Dispersion energy constants C 6(A, B), dipole oscillator strength sums and refractivities for Li, N, O, H2, N2, O2, NH3, H2O, NO and N2O , 1977 .

[9]  Stanisl,et al.  Many‐body perturbation theory of electrostatic interactions between molecules: Comparison with full configuration interaction for four‐electron dimers , 1993 .

[10]  R. Bartlett,et al.  Intermolecular potential energy surfaces of weakly bound dimers computed from ab initio density functional theory: The right answer for the right reason , 2005 .

[11]  M. Ratner Molecular electronic-structure theory , 2000 .

[12]  V. Barone,et al.  Accurate static polarizabilities by density functional theory: assessment of the PBE0 model , 1999 .

[13]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[14]  A. Thakkar Higher dispersion coefficients: Accurate values for hydrogen atoms and simple estimates for other systems , 1988 .

[15]  Tanja van Mourik,et al.  A critical note on density functional theory studies on rare-gas dimers , 2002 .

[16]  John P. Perdew,et al.  Exact differential equation for the density and ionization energy of a many-particle system , 1984 .

[17]  R. Dreizler,et al.  van der Waals bonds in density-functional theory , 2000 .

[18]  Georg Jansen,et al.  Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory , 2002 .

[19]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[20]  K. Burke,et al.  A guided tour of time-dependent density functional theory , 1998 .

[21]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[22]  Görling,et al.  Exact Kohn-Sham scheme based on perturbation theory. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[23]  A. Daniel Boese,et al.  Predicting the binding energies of H-bonded complexes: A comparative DFT study , 1999 .

[24]  R. Bartlett,et al.  Connections between second-order Görling–Levy and many-body perturbation approaches in density functional theory , 2003 .

[25]  R. Amos,et al.  The calculation of frequency-dependent polarizabilities using current density functional theory , 1997 .

[26]  H. Rydberg,et al.  UNIFIED TREATMENT OF ASYMPTOTIC VAN DER WAALS FORCES , 1998, cond-mat/9805352.

[27]  K. Szalewicz,et al.  Helium Dimer Interaction Energies from Gaussian Geminal and Orbital Calculations , 2004 .

[28]  D. Salahub,et al.  Asymptotic correction approach to improving approximate exchange–correlation potentials: Time-dependent density-functional theory calculations of molecular excitation spectra , 2000 .

[29]  K. Tang,et al.  An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients , 1984 .

[30]  W. J. Meath,et al.  Dipole oscillator strength distributions, sums, and dispersion energy coefficients for CO and CO2☆ , 1982 .

[31]  Fred A. Hamprecht,et al.  Development and assessment of new exchange-correlation functionals , 1998 .

[32]  C. Almbladh,et al.  Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues. , 1985, Physical review. B, Condensed matter.

[33]  John P. Perdew,et al.  Comment on ``Significance of the highest occupied Kohn-Sham eigenvalue'' , 1997 .

[34]  Evert Jan Baerends,et al.  A density-functional theory study of frequency-dependent polarizabilities and Van der Waals dispersion coefficients for polyatomic molecules , 1995 .

[35]  Georg Jansen,et al.  Intermolecular dispersion energies from time-dependent density functional theory , 2003 .

[36]  So Hirata,et al.  Ab initio density functional theory: OEP-MBPT(2). A new orbital-dependent correlation functional , 2002 .

[37]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[38]  H. Partridge Near Hartree–Fock quality GTO basis sets for the second‐row atoms , 1987 .

[39]  N. Handy,et al.  Assessment of exchange correlation functionals , 2000 .

[40]  Distributed polarizabilities using the topological theory of atoms in molecules , 1994 .

[41]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[42]  D. Joubert,et al.  Density Functionals: Theory and Applications , 1998 .

[43]  D. Tozer,et al.  Kohn–Sham calculations using hybrid exchange-correlation functionals with asymptotically corrected potentials , 2000 .

[44]  R. Kendall,et al.  Supermolecular approach to many‐body dispersion interactions in weak van der Waals complexes: He, Ne, and Ar trimers , 1994 .

[45]  P. J. Leonard Refractive indices, Verdet constants, and Polarizabilities of the inert gases , 1974 .

[46]  K. Szalewicz,et al.  Breit-Pauli and direct perturbation theory calculations of relativistic helium polarizability. , 2001, Physical review letters.

[47]  Tatiana Korona,et al.  Anisotropic intermolecular interactions in van der Waals and hydrogen-bonded complexes: What can we get from density functional calculations? , 1999 .

[48]  John P. Perdew,et al.  Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities , 1983 .

[49]  Robert A. Meyers,et al.  Encyclopedia of physical science and technology , 1987 .

[50]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[51]  Lembarki,et al.  Gradient-corrected exchange potential with the correct asymptotic behavior and the corresponding exchange-energy functional obtained from the virial theorem. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[52]  Max Born,et al.  Zur Gittertheorie der Ionenkristalle , 1932 .

[53]  Mark E. Casida,et al.  Correlated optimized effective-potential treatment of the derivative discontinuity and of the highest occupied Kohn-Sham eigenvalue: A Janak-type theorem for the optimized effective-potential model , 1999 .

[54]  M. Szczęśniak,et al.  Origins of Structure and Energetics of van der Waals Clusters from ab Initio Calculations , 1994 .

[55]  J. Perdew,et al.  Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy , 1982 .

[56]  Georg Jansen,et al.  First-order intermolecular interaction energies from Kohn–Sham orbitals , 2002 .

[57]  P. Wormer,et al.  Many‐body perturbation theory of frequency‐dependent polarizabilities and van der Waals coefficients: Application to H2O–H2O and Ar–NH3 , 1992 .

[58]  Evert Jan Baerends,et al.  Shape corrections to exchange-correlation potentials by gradient-regulated seamless connection of model potentials for inner and outer region , 2001 .

[59]  A. Daniel Boese,et al.  A new parametrization of exchange–correlation generalized gradient approximation functionals , 2001 .

[60]  David J. Tozer,et al.  Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials , 2001 .

[61]  C. Chabalowski,et al.  Using Kohn−Sham Orbitals in Symmetry-Adapted Perturbation Theory to Investigate Intermolecular Interactions , 2001 .

[62]  K. Szalewicz,et al.  On the effectiveness of monomer‐, dimer‐, and bond‐centered basis functions in calculations of intermolecular interaction energies , 1995 .

[63]  S. Chu,et al.  Sensitive detection of cold cesium molecules formed on Feshbach resonances. , 2002, Physical review letters.

[64]  A. Becke Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals , 1997 .

[65]  M. E. Casida Time-Dependent Density Functional Response Theory for Molecules , 1995 .

[66]  V. Barone,et al.  An accurate density functional method for the study of magnetic properties: the PBE0 model , 1999 .

[67]  H. Rydberg,et al.  DENSITY FUNCTIONALS AND VAN DER WAALS INTERACTIONS AT SURFACES , 1998 .

[68]  G. Scoles,et al.  Intermolecular forces via hybrid Hartree–Fock–SCF plus damped dispersion (HFD) energy calculations. An improved spherical model , 1982 .

[69]  Nicholas C. Handy,et al.  Improving virtual Kohn-Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities , 1998 .

[70]  Manfred Lein,et al.  Toward the description of van der Waals interactions within density functional theory , 1999, J. Comput. Chem..

[71]  Krzysztof Szalewicz,et al.  Intermolecular forces from asymptotically corrected density functional description of monomers , 2002 .

[72]  D. Tozer EXACT HYDROGENIC DENSITY FUNCTIONALS , 1997 .

[73]  Stephen Wilson,et al.  Handbook of molecular physics and quantum chemistry , 2003 .

[74]  K. Szalewicz,et al.  Many‐body theory of exchange effects in intermolecular interactions. Density matrix approach and applications to He–F−, He–HF, H2–HF, and Ar–H2 dimers , 1994 .

[75]  K. Szalewicz,et al.  Intermolecular potential energy surfaces and spectra of Ne-HCN complex from ab initio calculations , 2001 .

[76]  K. Szalewicz,et al.  Spectra of Ar–CO2 from ab initio potential energy surfaces , 2000 .

[77]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[78]  Michiel Sprik,et al.  New generalized gradient approximation functionals , 2000 .

[79]  Tatiana Korona,et al.  Electrostatic interactions between molecules from relaxed one-electron density matrices of the coupled cluster singles and doubles model , 2002 .

[80]  Jun Wang,et al.  SUCCESSFUL TEST OF A SEAMLESS VAN DER WAALS DENSITY FUNCTIONAL , 1999 .

[81]  K. Szalewicz,et al.  Pair potential for water from symmetry-adapted perturbation theory , 1997 .

[82]  Hans Peter Lüthi,et al.  Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the PW91 model , 2001 .

[83]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .

[84]  K. Szalewicz,et al.  Helium dimer potential from symmetry-adapted perturbation theory calculations using large Gaussian geminal and orbital basis sets , 1997 .