Hyperbox classifiers for arrhythmia classification

Purpose – This paper sets out to design hyperbox classifiers of high interpretation capabilities. They are based on a collection of hyperboxes – generic and highly interpretable geometric descriptors of data belonging to a certain class. Such hyperboxes directly translate into conditional statements (rules) taking on the well‐known format “if feature1 assumes values in [a,b] and feature2 assumes values in [d,f] and … and featuren assumes values in [w,z] then class ω” where the intervals ([a,b],…[w,z]) are the respective edges (features) of the corresponding hyperbox.Design/methodology/approach – The proposed design process of hyperboxes consists of two main phases. In the first phase, a collection of “seeds” of the hyperboxes is constructed through data clustering being realized by means of the fuzzy C‐means algorithm. During the second phase, the hyperboxes are “grown” (expanded) by applying mechanisms of genetic optimization (and genetic algorithm, in particular).Findings – It is demonstrated how the un...

[1]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[2]  Witold Pedrycz,et al.  An interactive framework for an analysis of ECG signals , 2002, Artif. Intell. Medicine.

[3]  P. Caminal,et al.  Adaptive feature extraction for QRS classification and ectopic beat detection , 1991, [1991] Proceedings Computers in Cardiology.

[4]  Andrzej Bargiela,et al.  General fuzzy min-max neural network for clustering and classification , 2000, IEEE Trans. Neural Networks Learn. Syst..

[5]  David E. Goldberg,et al.  Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking , 1991, Complex Syst..

[6]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[7]  P. K. Simpson Fuzzy Min-Max Neural Networks-Part 1 : Classification , 1992 .

[8]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[9]  Patrick K. Simpson,et al.  Fuzzy min-max neural networks - Part 2: Clustering , 1993, IEEE Trans. Fuzzy Syst..

[10]  Philip de Chazal,et al.  Automatic classification of heartbeats using ECG morphology and heartbeat interval features , 2004, IEEE Transactions on Biomedical Engineering.

[11]  Ivanoe De Falco,et al.  Discovering interesting classification rules with genetic programming , 2002, Appl. Soft Comput..

[12]  Patrick K. Simpson,et al.  Fuzzy min-max neural networks. I. Classification , 1992, IEEE Trans. Neural Networks.

[13]  C Brohet,et al.  Possibilities of using neural networks for ECG classification. , 1996, Journal of electrocardiology.

[14]  L. J. Eshleman RealCoded Genetic Algorithms and Interval-Schemata , 1993 .

[15]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[16]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[17]  F.M. Ham,et al.  Classification of cardiac arrhythmias using fuzzy ARTMAP , 1996, IEEE Transactions on Biomedical Engineering.

[18]  G. Bortolan,et al.  Ranking of pattern recognition parameters for premature ventricular contractions classification by neural networks , 2004, Physiological measurement.

[19]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[20]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[21]  Carsten Peterson,et al.  Clustering ECG complexes using Hermite functions and self-organizing maps , 2000, IEEE Trans. Biomed. Eng..

[22]  Witold Pedrycz,et al.  Classification of electrocardiographic signals: a fuzzy pattern matching approach , 1991, Artif. Intell. Medicine.

[23]  James E. Baker,et al.  Adaptive Selection Methods for Genetic Algorithms , 1985, International Conference on Genetic Algorithms.