Detection methods at reactor neutrino experiments

Abstract In 2011 and 2012, the smallest neutrino mixing angle θ 13 was determined to be unexpected large by reactor neutrino experiments Daya Bay, Double Chooz, and RENO, and accelerator experiments T2K and MINOS. The most precise measurement is sin 2 2 θ 13 = 0.089 ± 0.010 ( stat . ) ± 0.005 ( syst . ) , provided by Daya Bay. The measurement of θ 13 opened the gateway to the mass hierarchy and CP phase measurements. It also marked the beginning of precision measurements in neutrino studies. With near-far relative measurement and improvements in detector design, the relative precision of neutrino detectors reached 0.2%. Detection methods for reactor neutrinos are reviewed. The highlighted techniques include gadolinium-doped liquid scintillator, three-layer detectors, functionally identical detectors, reflective panel, background shielding, etc. The next generation reactor neutrino experiment Daya Bay II and its technical challenges are briefly described.

[1]  Final results on the neutrino magnetic moment from the MUNU experiment , 2005, hep-ex/0502037.

[2]  S. Cormon,et al.  Improved Predictions of Reactor Antineutrino Spectra , 2011, 1101.2663.

[3]  M. Lindner,et al.  Reactor neutrino experiments compared to superbeams , 2003, hep-ph/0303232.

[4]  Jun Cao,et al.  Determination of the neutrino mass hierarchy at an intermediate baseline , 2008, 0807.3203.

[5]  et al,et al.  Search of neutrino magnetic moments with a high-purity germanium detector at the Kuo-Sheng nuclear power station , 2007 .

[6]  Tejpreet Singh Golan,et al.  Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam. , 2011, Physical review letters.

[7]  P. Huber On the determination of anti-neutrino spectra from nuclear reactors , 2011 .

[8]  J. I. Crespo-Anadón,et al.  Indication of reactor ν(e) disappearance in the Double Chooz experiment. , 2012, Physical review letters.

[9]  A. Starostin,et al.  First result for the neutrino magnetic moment from measurements with the GEMMA spectrometer , 2007, 0705.4576.

[10]  Y. Wang,et al.  Final results from the Palo Verde neutrino oscillation experiment , 2000 .

[11]  R. E. Schenter,et al.  Reactor antineutrino spectra and their application to antineutrino-induced reactions. II , 1979 .

[12]  I. G. Park,et al.  Observation of reactor electron antineutrinos disappearance in the RENO experiment. , 2012, Physical review letters.

[13]  P. Huber Erratum: Determination of antineutrino spectra from nuclear reactors [Phys. Rev. C 84 , 024617 (2011)] , 2012 .

[14]  T. O'donnell Precision measurement of neutrino oscillation parameters with KamLAND , 2008 .

[15]  L. Y. Wang,et al.  Observation of electron-antineutrino disappearance at Daya Bay. , 2012, Physical review letters.

[16]  P. Huber Determination of antineutrino spectra from nuclear reactors , 2011, 1106.0687.

[17]  B. R. Littlejohn,et al.  A side-by-side comparison of Daya Bay antineutrino detectors , 2012, 1202.6181.

[18]  F. B. Harrison,et al.  Detection of the Free Neutrino: a Confirmation. , 1956, Science.

[19]  L. Wen,et al.  Experimental Requirements to Determine the Neutrino Mass Hierarchy Using Reactor Neutrinos , 2009, 0901.2976.

[20]  R. Hahn,et al.  Gadolinium-loaded liquid scintillator for high-precision measurements of antineutrino oscillations and the mixing angle, θ13 , 2007 .

[21]  Search for neutrino oscillations on a long base-line at the CHOOZ nuclear power station , 2003, hep-ex/0301017.

[22]  F. Boehm,et al.  Search for neutrino oscillations at a fission reactor , 1981 .

[23]  P. Zhou,et al.  A new gadolinium-loaded liquid scintillator for reactor neutrino detection , 2008 .

[24]  M. Decowski,et al.  Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion. , 2004, Physical review letters.

[25]  X. Qian,et al.  Improved Measurement of Electron Antineutrino Disappearance at Daya Bay (Proceeding to NuFact12) , 2012, 1210.6327.