A move on diagrams that generates S-equivalence of knots
暂无分享,去创建一个
[1] L. Kauffman,et al. AN ELEMENTARY PROOF THAT ALL SPANNING SURFACES OF A LINK ARE TUBE-EQUIVALENT , 1998 .
[2] Hitoshi Murakami,et al. On a certain move generating link-homology , 1989 .
[3] J. Birman. Braids, Links, and Mapping Class Groups. , 1975 .
[4] C. Kearton. Blanchfield duality and simple knots , 1975 .
[5] Joan S. Birman,et al. Braids, Links, and Mapping Class Groups. (AM-82) , 1975 .
[6] H. Trotter. OnS-equivalence of Seifert matrices , 1973 .
[7] P. Rice. Equivalence of Alexander matrices , 1971 .
[8] J. Levine. An algebraic classification of some knots of codimension two , 1970 .
[9] K. Murasugi. ON A CERTAIN NUMERICAL INVARIANT OF LINK TYPES , 1965 .
[10] H. Trotter. Homology of Group Systems With Applications to Knot Theory , 1962 .
[11] Akio Kawauchi,et al. A Survey of Knot Theory , 1996 .
[12] Louis H. Kauffman,et al. Formal Knot Theory , 1983 .
[13] C. Gordon. Some aspects of classical knot theory , 1978 .