A comparison of water uptake by aerosols using two thermodynamic models

Abstract. A comprehensive comparison between two aerosol thermodynamic equilibrium models used in chemistry-climate simulations, EQUISOLV II and EQSAM3, is conducted for various relative humidities and chemical compositions. Our results show that the concentration of total particulate matter as well as the associated aerosol liquid water content predicted by these two models is comparable for all conditions, which is important for radiative forcing estimates. The normalized absolute difference in the concentration of total particulate matter is 6% on average for all 200 conditions studied, leading to a regression coefficient of about 0.8 for the water associated with the aerosol between these two models. Relatively large discrepancies occur, however, at high ammonium, low nitrate/sodium concentrations at low and medium relative humidities (RH

[1]  A. Nenes,et al.  ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K + –Ca 2+ –Mg 2+ –NH 4 + –Na + –SO 4 2− –NO 3 − –Cl − –H 2 O aerosols , 2007 .

[2]  J. Penner,et al.  Global modeling of nitrate and ammonium: Interaction of aerosols and tropospheric chemistry , 2007 .

[3]  J. Seinfeld,et al.  A new inorganic atmospheric aerosol phase equilibrium model (UHAERO) , 2006 .

[4]  Leonard K. Peters,et al.  A computationally efficient Multicomponent Equilibrium Solver for Aerosols (MESA) , 2005 .

[5]  J. Lelieveld,et al.  Importance of mineral cations and organics in gas-aerosol partitioning of reactive nitrogen compounds : case study based on MINOS results , 2005 .

[6]  Hugh Coe,et al.  A curved multi-component aerosol hygroscopicity model framework: Part 2 - Including organic compounds , 2005 .

[7]  Jenise L. Swall,et al.  An assessment of the ability of three‐dimensional air quality models with current thermodynamic equilibrium models to predict aerosol NO3− , 2005 .

[8]  J. Lelieveld,et al.  Ground-based PTR-MS measurements of reactive organic compounds during the MINOS campaign in Crete, July-August 2001 , 2003 .

[9]  A. Nenes,et al.  Inorganic chemistry calculations using HETV—a vectorized solver for the SO42−–NO3−–NH4+ system based on the ISORROPIA algorithms , 2003 .

[10]  John H. Seinfeld,et al.  Interactions between tropospheric chemistry and aerosols in a unified general circulation model , 2003 .

[11]  J. Lelieveld,et al.  Global Air Pollution Crossroads over the Mediterranean , 2002, Science.

[12]  Jos Lelieveld,et al.  Gas/aerosol partitioning: 1. A computationally efficient model , 2002 .

[13]  A. Wexler,et al.  Atmospheric aerosol models for systems including the ions H+, NH4+, Na+, SO42−, NO3−, Cl−, Br−, and H2O , 2002 .

[14]  Nikos Mihalopoulos,et al.  Seasonal variation of dimethylsulfide in the gas phase and of methanesulfonate and non-sea-salt sulfate in the aerosols phase in the Eastern Mediterranean atmosphere , 2002 .

[15]  S. Pandis,et al.  Partitioning of nitrate and ammonium between the gas and particulate phases during the 1997 IMADA-AVER study in Mexico City , 2001 .

[16]  M. Jacobson Studying the effects of calcium and magnesium on size-distributed nitrate and ammonium with EQUISOLV II , 1999 .

[17]  S. Pandis,et al.  An Analysis of Four Models Predicting the Partitioning of Semivolatile Inorganic Aerosol Components , 1999 .

[18]  John H. Seinfeld,et al.  Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model , 1999 .

[19]  A. Nenes,et al.  Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models , 1999 .

[20]  S. Pandis,et al.  Prediction of multicomponent inorganic atmospheric aerosol behavior , 1999 .

[21]  C. C. Chuang,et al.  Climate forcing by carbonaceous and sulfate aerosols , 1998 .

[22]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1998 .

[23]  Mark Z. Jacobson,et al.  Fundamentals of atmospheric modeling , 1998 .

[24]  A. Nenes,et al.  ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols , 1998 .

[25]  A. Wexler,et al.  Thermodynamic Model of the System H+−NH4+−Na+−SO42-−NO3-−Cl-−H2O at 298.15 K , 1998 .

[26]  Peter Brimblecombe,et al.  Thermodynamic Model of the System H+−NH4+−SO42-−NO3-−H2O at Tropospheric Temperatures , 1998 .

[27]  J. Seinfeld,et al.  Time scales to achieve atmospheric gas-aerosol equilibrium for volatile species , 1996 .

[28]  R. Turco,et al.  Simulating equilibrium within aerosols and nonequilibrium between gases and aerosols , 1996 .

[29]  John H. Seinfeld,et al.  Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition , 1995 .

[30]  P. Brimblecombe,et al.  A Thermodynamic Model of the System HCl-HNO3-H2SO4-H2O, Including Solubilities of HBr, from <200 to 328 K , 1995 .

[31]  J. Seinfeld,et al.  Atmospheric gas−aerosol equilibrium. II: Analysis of common approximations and activity coefficient calculation methods , 1993 .

[32]  Peter Brimblecombe,et al.  Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes , 1992 .

[33]  K. Pitzer,et al.  Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent , 1973 .

[34]  L. A. Bromley Thermodynamic properties of strong electrolytes in aqueous solutions , 1973 .

[35]  R. Robinson,et al.  Interactions in Aqueous Nonelectrolyte Solutions. I. Solute-Solvent Equilibria , 1966 .

[36]  J. Lelieveld,et al.  Reformulating atmospheric aerosol thermodynamics and hygroscopic growth into fog, haze and clouds , 2007 .

[37]  J. Seinfeld,et al.  A comparative review of inorganic aerosol thermodynamic equilibrium modules: similarities, differences, and their likely causes , 2000 .

[38]  S. Pandis,et al.  The effect of metastable equilibrium states on the partitioning of nitrate between the gas and aerosol phases , 2000 .

[39]  J. Seinfeld,et al.  Atmospheric Gas–Aerosol Equilibrium: III. Thermodynamics of Crustal Elements Ca2+, K+, and Mg2+ , 1995 .

[40]  J. Seinfeld,et al.  Atmospheric Gas-Aerosol Equilibrium: IV. Thermodynamics of Carbonates , 1995 .

[41]  K. Pitzer,et al.  Thermodynamics of multicomponent, miscible, ionic solutions: generalized equations for symmetrical electrolytes. [Erratum to document cited in CA116(20):202049x] , 1994 .

[42]  J. Seinfeld,et al.  Atmospheric Gas-Aerosol Equilibrium I. Thermodynamic Model , 1993 .

[43]  J. Seinfeld,et al.  Second-generation inorganic aerosol model , 1991 .

[44]  J. Seinfeld,et al.  The distribution of ammonium salts among a size and composition dispersed aerosol , 1990 .

[45]  J. Seinfeld,et al.  Continued development of a general equilibrium model for inorganic multicomponent atmospheric aerosols , 1987 .

[46]  J. Seinfeld,et al.  A comparative study of equilibrium approaches to the chemical characterization of secondary aerosols , 1986 .

[47]  J. Spann,et al.  Measurement of the water cycle in mixed ammonium acid sulfate particles , 1985 .

[48]  J. Seinfeld,et al.  Atmospheric equilibrium model of sulfate and nitrate aerosols—II. Particle size analysis , 1984 .

[49]  J. Seinfeld,et al.  Atmospheric equilibrium model of sulfate and nitrate aerosols , 1983 .

[50]  B. B. Owen,et al.  The Physical Chemistry of Electrolytic Solutions , 1963 .