Nonlocal general vector nonlinear Schrödinger equations: Integrability, PT symmetribility, and solutions

Abstract A family of new one-parameter ( ϵ x = ± 1 ) nonlinear wave models (called G ϵ x ( n m ) model) is presented, including both the local ( ϵ x = 1 ) and new integrable nonlocal ( ϵ x = − 1 ) general vector nonlinear Schrodinger (VNLS) equations with the self-phase, cross-phase, and multi-wave mixing modulations. The nonlocal G − 1 ( n m ) model is shown to possess the Lax pair and infinite number of conservation laws for m = 1 . We also establish a connection between the G ϵ x ( n m ) model and some known models. Some symmetric reductions and exact solutions (e.g., bright, dark, and mixed bright-dark solitons) of the representative nonlocal systems are also found. Moreover, we find that the new general two-parameter ( ϵ x , ϵ t ) model (called G ϵ x , ϵ t ( n m ) model) including the G ϵ x ( n m ) model is invariant under the P T -symmetric transformation and the P T symmetribility of its self-induced potentials is discussed for the distinct two parameters ( ϵ x , ϵ t ) = ( ± 1 , ± 1 ) .

[1]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[2]  Sarah Rothstein,et al.  Optical Solitons From Fibers To Photonic Crystals , 2016 .

[3]  N. Akhmediev,et al.  Modulation instability and periodic solutions of the nonlinear Schrödinger equation , 1986 .

[4]  Zhenya Yan,et al.  Solitons in a nonlinear Schrödinger equation with PT -symmetric potentials and inhomogeneous nonlinearity: Stability and excitation of nonlinear modes , 2015, 1509.05888.

[5]  Zhenya Yan Complex PT-symmetric nonlinear Schrödinger equation and Burgers equation , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[7]  Yong Chen,et al.  Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials , 2016, Scientific Reports.

[8]  Vladimir E. Zakharov,et al.  A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I , 1974 .

[9]  Z. Musslimani,et al.  Beam dynamics in PT symmetric optical lattices. , 2008, Physical review letters.

[10]  Shanhui Fan,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[11]  M. Kruskal,et al.  New similarity reductions of the Boussinesq equation , 1989 .

[12]  Z. Musslimani,et al.  Optical Solitons in PT Periodic Potentials , 2008 .

[13]  M. Ablowitz,et al.  Integrable nonlocal nonlinear Schrödinger equation. , 2013, Physical review letters.

[14]  Zhenya Yan Financial Rogue Waves , 2009, 0911.4259.

[15]  Zhenya Yan,et al.  Spatial solitons and stability in self-focusing and defocusing Kerr nonlinear media with generalized parity-time-symmetric Scarff-II potentials. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Peter A. Clarkson,et al.  THE DIRECT METHOD IN SOLITON THEORY (Cambridge Tracts in Mathematics 155) , 2006 .

[17]  Yan‐Chow Ma,et al.  The Perturbed Plane‐Wave Solutions of the Cubic Schrödinger Equation , 1979 .

[18]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[19]  M. Segev,et al.  Theory of Self-Trapped Spatially Incoherent Light Beams , 1997 .

[20]  Zhenya Yan,et al.  Nonclassical potential solutions of partial differential equations , 2005, European Journal of Applied Mathematics.

[21]  Zhenya Yan,et al.  Modulational instability and higher-order rogue waves with parameters modulation in a coupled integrable AB system via the generalized Darboux transformation. , 2015, Chaos.

[22]  Deng-Shan Wang,et al.  Integrable properties of the general coupled nonlinear Schrödinger equations , 2010 .

[23]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[24]  Zhenya Yan,et al.  Integrable PT-symmetric local and nonlocal vector nonlinear Schrödinger equations: A unified two-parameter model , 2015, Appl. Math. Lett..

[25]  V. Konotop,et al.  Nonlinear modes in finite-dimensional PT-symmetric systems. , 2012, Physical review letters.

[26]  Vladimir E. Zakharov,et al.  To the integrability of the system of two coupled nonlinear Schrödinger equations , 1982 .

[27]  E. K. Sklyanin,et al.  O(N)-invariant nonlinear Schrödinger equation — A new completely integrable system , 1981 .

[28]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[29]  W. Perrie,et al.  Nonlinear Ocean Waves , 1997 .

[30]  Vladimir G. Ivancevic,et al.  Adaptive-Wave Alternative for the Black-Scholes Option Pricing Model , 2009, Cognitive Computation.

[31]  Andrew G. Glen,et al.  APPL , 2001 .

[32]  Zhenya Yan,et al.  Vector financial rogue waves , 2011 .

[33]  M. Wadati,et al.  Relationships among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws , 1975 .

[34]  Dla Polski,et al.  EURO , 2004 .

[35]  Karsten Trulsen,et al.  NOTE ON BREATHER TYPE SOLUTIONS OF THE NLS AS MODELS FOR FREAK-WAVES , 1999 .

[36]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[37]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[38]  M Senthilvelan,et al.  Dark solitons, breathers, and rogue wave solutions of the coupled generalized nonlinear Schrödinger equations. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Agalar Agalarov,et al.  Bright, dark, and mixed vector soliton solutions of the general coupled nonlinear Schrödinger equations. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .