A Regional Ensemble Prediction System Based on Moist Targeted Singular Vectors and Stochastic Parameter Perturbations

Abstract A regional ensemble prediction system (REPS) with the limited-area version of the Canadian Global Environmental Multiscale (GEM) model at 15-km horizontal resolution is developed and tested. The total energy norm singular vectors (SVs) targeted over northeastern North America are used for initial and boundary perturbations. Two SV perturbation strategies are tested: dry SVs with dry simplified physics and moist SVs with simplified physics, including stratiform condensation and convective precipitation as well as dry processes. Model physics uncertainties are partly accounted for by stochastically perturbing two parameters: the threshold vertical velocity in the trigger function of the Kain–Fritsch deep convection scheme, and the threshold humidity in the Sundqvist explicit scheme. The perturbations are obtained from first-order Markov processes. Short-range ensemble forecasts in summer with 16 members are performed for five different experiments. The experiments employ different perturbation and ...

[1]  J. Mahfouf,et al.  A Canadian precipitation analysis (CaPA) project: Description and preliminary results , 2007 .

[2]  B. Hoskins,et al.  Moist singular vectors and the predictability of some high impact European cyclones , 2005 .

[3]  Thomas M. Hamill,et al.  Verification of Eta–RSM Short-Range Ensemble Forecasts , 1997 .

[4]  Wei Yu,et al.  Evaluation of model clouds and radiation at 100 km scale using GOES data , 1997 .

[5]  M. Buehner,et al.  Impact of flow‐dependent analysis‐error covariance norms on extratropical singular vectors , 2006 .

[6]  A. Staniforth,et al.  The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part II: Results , 1998 .

[7]  Z. Toth,et al.  Short-Term Dynamics of Model Errors , 2002 .

[8]  S. Planton,et al.  A Simple Parameterization of Land Surface Processes for Meteorological Models , 1989 .

[9]  G. Brier VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF PROBABILITY , 1950 .

[10]  J. Barkmeijer,et al.  A Short-Range to Early-Medium-Range Ensemble Prediction System for the European Area , 2000 .

[11]  Mark Buehner,et al.  Spectral and spatial localization of background‐error correlations for data assimilation , 2007 .

[12]  Jun Du,et al.  Removal of Distortion Error from an Ensemble Forecast , 2000 .

[13]  R. Buizza,et al.  Application of a Limited-Area Short-Range Ensemble Forecast System to a Case of Heavy Rainfall in the Mediterranean Region , 2004 .

[14]  A. Hollingsworth,et al.  Probabilistic Predictions of Precipitation Using the ECMWF Ensemble Prediction System , 1999 .

[15]  Roberto Buizza,et al.  The Influence of Physical Processes on Extratropical Singular Vectors , 2004 .

[16]  T. Palmer,et al.  Singular Vectors, Metrics, and Adaptive Observations. , 1998 .

[17]  F. Molteni,et al.  The ECMWF Ensemble Prediction System: Methodology and validation , 1996 .

[18]  Roberto Buizza,et al.  The Soverato flood in Southern Italy: performance of global and limited-area ensemble forecasts , 2003 .

[19]  Stéphane Bélair,et al.  Operational Implementation of the ISBA Land Surface Scheme in the Canadian Regional Weather Forecast Model. Part II: Cold Season Results , 2003 .

[20]  Johnny Wei-Bing Lin,et al.  Influence of a stochastic moist convective parameterization on tropical climate variability , 2000 .

[21]  R. Benoit,et al.  Inclusion and verification of a predictive Cloud-Water Scheme in a Regional Numerical Weather Prediction Model , 1992 .

[22]  Jean Côté,et al.  The CMC-MRB Global Environmental Multiscale (GEM) Model. Part III: Nonhydrostatic Formulation , 2002 .

[23]  J. Deardorff Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation , 1978 .

[24]  David J. Stensrud,et al.  Using Initial Condition and Model Physics Perturbations in Short-Range Ensemble Simulations of Mesoscale Convective Systems , 2000 .

[25]  Thomas M. Hamill,et al.  Measuring forecast skill: is it real skill or is it the varying climatology? , 2006 .

[26]  David J. Stensrud,et al.  Short-Range Ensemble Predictions of 2-m Temperature and Dewpoint Temperature over New England , 2003 .

[27]  K. Droegemeier,et al.  Objective Verification of the SAMEX ’98 Ensemble Forecasts , 2001 .

[28]  R. Benoit,et al.  A Finite-Element Model of the Atmospheric Boundary Layer Suitable for Use with Numerical Weather Prediction Models , 1982 .

[29]  R. Buizza Localization of optimal perturbations using a projection operator , 1994 .

[30]  A. Staniforth,et al.  The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part I: Design Considerations and Formulation , 1998 .

[31]  J. Kain,et al.  The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems , 1992 .

[32]  Inger-Lise Frogner,et al.  High‐resolution limited‐area ensemble predictions based on low‐resolution targeted singular vectors , 2002 .

[33]  Jean Côté,et al.  Inclusion of a TKE Boundary Layer Parameterization in the Canadian Regional Finite-Element Model , 1989 .

[34]  Harold E. Brooks,et al.  Using Ensembles for Short-Range Forecasting , 1999 .

[35]  Norman A. McFarlane,et al.  The Effect of Orographically Excited Gravity Wave Drag on the General Circulation of the Lower Stratosphere and Troposphere , 1987 .

[36]  Jun Du,et al.  Short-Range Ensemble Forecasting of Quantitative Precipitation , 1997 .

[37]  T. Palmer,et al.  Stochastic representation of model uncertainties in the ECMWF ensemble prediction system , 2007 .

[38]  Louis Garand,et al.  Some Improvements and Complements to the Infrared Emissivity Algorithm Including a Parameterization of the Absorption in the Continuum Region. , 1983 .

[39]  E. Grimit,et al.  Initial Results of a Mesoscale Short-Range Ensemble Forecasting System over the Pacific Northwest , 2002 .

[40]  J. Kain,et al.  A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization , 1990 .

[41]  Roberto Buizza,et al.  A strategy for high‐resolution ensemble prediction. II: Limited‐area experiments in four Alpine flood events , 2001 .

[42]  D. Stensrud,et al.  Evaluation of a Short-Range Multimodel Ensemble System , 2001 .

[43]  Jan Barkmeijer Constructing Fast-Growing Perturbations for the Nonlinear Regime , 1996 .

[44]  P. L. Houtekamer,et al.  Verification of an Ensemble Prediction System against Observations , 2007 .

[45]  Sensitivity of North American Numerical Weather Prediction to Initial State Uncertainty in Selected Upstream Subdomains , 2001 .

[46]  S. Mullen,et al.  Short-Range Ensemble Forecasts of Precipitation during the Southwest Monsoon , 2002 .

[47]  David P. Baumhefner,et al.  The Impact of Initial Condition Uncertainty on Numerical Simulations of Large-scale Explosive Cyclogenesis , 1989 .

[48]  David J. Stensrud,et al.  Effects of Coarsely Resolved and Temporally Interpolated Lateral Boundary Conditions on the Dispersion of Limited-Area Ensemble Forecasts , 2004 .

[49]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[50]  Michel Roch,et al.  The subgrid‐scale orographic blocking parametrization of the GEM Model , 2003 .

[51]  Roberto Buizza,et al.  The Singular-Vector Structure of the Atmospheric Global Circulation , 1995 .

[52]  John S. Kain,et al.  The Kain–Fritsch Convective Parameterization: An Update , 2004 .

[53]  J. Kristjánsson,et al.  Condensation and Cloud Parameterization Studies with a Mesoscale Numerical Weather Prediction Model , 1989 .

[54]  Franco Molteni,et al.  Predictability and finite‐time instability of the northern winter circulation , 1993 .

[55]  Stéphane Laroche,et al.  Implementation of a 3D variational data assimilation system at the Canadian Meteorological Centre. Part I: The global analysis , 1999 .

[56]  D. Richardson Skill and relative economic value of the ECMWF ensemble prediction system , 2000 .

[57]  A. H. Murphy A New Vector Partition of the Probability Score , 1973 .

[58]  H. Kuo On Formation and Intensification of Tropical Cyclones Through Latent Heat Release by Cumulus Convection , 1965 .

[59]  H. Kuo Further Studies of the Parameterization of the Influence of Cumulus Convection on Large-Scale Flow , 1974 .

[60]  René Laprise,et al.  The Euler Equations of Motion with Hydrostatic Pressure as an Independent Variable , 1992 .

[61]  M. Buehner,et al.  Impact of the GEM model simplified physics on extratropical singular vectors , 2004 .

[62]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[63]  Jeffrey L. Anderson A Method for Producing and Evaluating Probabilistic Forecasts from Ensemble Model Integrations , 1996 .

[64]  F. Atger Relative impact of model quality and ensemble deficiencies on the performance of ensemble based probabilistic forecasts evaluated through the Brier score , 2004 .

[65]  Zhiwei Yang,et al.  Tests of a Perturbed Physics Ensemble Approach for Regional Climate Modeling , 2002 .

[66]  D. Wilks Effects of stochastic parametrizations in the Lorenz '96 system , 2005 .

[67]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[68]  Roberto Buizza,et al.  3D‐Var Hessian singular vectors and their potential use in the ECMWF ensemble prediction system , 1999 .

[69]  E. Lorenz A study of the predictability of a 28-variable atmospheric model , 1965 .

[70]  T. Iversen,et al.  Targeted ensemble prediction for northern Europe and parts of the north Atlantic Ocean , 2001 .

[71]  Ronald M. Errico,et al.  Singular-Vector Perturbation Growth in a Primitive Equation Model with Moist Physics , 1999 .