Interpolating Orientation Fields: An Axiomatic Approach

We develop an axiomatic approach of vector field interpolation, which is useful as a feature extraction preprocessing step. Two operators will be singled out: the curvature operator, appearing in the total variation minimisation for image restoration and inpainting/disocclusion, and the Absolutely Minimizing Lipschitz Extension (AMLE), already known as a robust and coherent scalar image interpolation technique if we relax slightly the axioms. Numerical results, using a multiresolution scheme, show that they produce fields in accordance with the human perception of edges.

[1]  G. Medioni,et al.  Grouping . ,-, → ,-, into regions , curves , and junctions , 1999 .

[2]  David Tschumperlé,et al.  LIC-based regularization of multi-valued images , 2005, IEEE International Conference on Image Processing 2005.

[3]  Jean-Michel Morel,et al.  Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[4]  D. Mumford Elastica and Computer Vision , 1994 .

[5]  Lance R. Williams,et al.  Euclidean Group Invariant Computation of Stochastic Completion Fields Using Shiftable-Twistable Functions , 2000, Journal of Mathematical Imaging and Vision.

[6]  Mi-Suen Lee,et al.  A Computational Framework for Segmentation and Grouping , 2000 .

[7]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[9]  J. Morel,et al.  An axiomatic approach to image interpolation. , 1998, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[10]  Vicent Caselles,et al.  Disocclusion by Joint Interpolation of Vector Fields and Gray Levels , 2003, Multiscale Model. Simul..

[11]  C. Bajaj Algebraic Geometry and its Applications , 1994 .

[12]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[13]  Thomas C. Cecil,et al.  Numerical methods for minimization problems constrained to S1 and S2 , 2004, Journal of Computational Physics.

[14]  Pietro Perona,et al.  Orientation diffusions , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Mi-Suen Lee,et al.  Grouping ., -, ->, [formula], into Regions, Curves, and Junctions , 1999, Comput. Vis. Image Underst..

[16]  M. Crandall,et al.  A TOUR OF THE THEORY OF ABSOLUTELY MINIMIZING FUNCTIONS , 2004 .

[17]  G. Aronsson Extension of functions satisfying lipschitz conditions , 1967 .

[18]  Stanley Osher,et al.  Image Decomposition and Restoration Using Total Variation Minimization and the H1 , 2003, Multiscale Model. Simul..

[19]  S. Osher,et al.  IMAGE DECOMPOSITION AND RESTORATION USING TOTAL VARIATION MINIMIZATION AND THE H−1 NORM∗ , 2002 .

[20]  M. Wertheimer Untersuchungen zur Lehre von der Gestalt. II , 1923 .

[21]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[22]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods/ J. A. Sethian , 1999 .

[23]  Shimon Ullman,et al.  Structural Saliency: The Detection Of Globally Salient Structures using A Locally Connected Network , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[24]  Rachid Deriche,et al.  Using Canny's criteria to derive a recursively implemented optimal edge detector , 1987, International Journal of Computer Vision.

[25]  A. Granas,et al.  Fixed Point Theory , 2003 .

[26]  Ron Kimmel,et al.  Orientation Diffusion or How to Comb a Porcupine , 2002, J. Vis. Commun. Image Represent..

[27]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[28]  R. Jensen Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient , 1993 .

[29]  Pietro Perona Orientation diffusions , 1998, IEEE Trans. Image Process..

[30]  Guillermo Sapiro,et al.  Diffusion of General Data on Non-Flat Manifolds via Harmonic Maps Theory: The Direction Diffusion Case , 2000, International Journal of Computer Vision.

[31]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..