Interpolating Orientation Fields: An Axiomatic Approach
暂无分享,去创建一个
[1] G. Medioni,et al. Grouping . ,-, → ,-, into regions , curves , and junctions , 1999 .
[2] David Tschumperlé,et al. LIC-based regularization of multi-valued images , 2005, IEEE International Conference on Image Processing 2005.
[3] Jean-Michel Morel,et al. Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).
[4] D. Mumford. Elastica and Computer Vision , 1994 .
[5] Lance R. Williams,et al. Euclidean Group Invariant Computation of Stochastic Completion Fields Using Shiftable-Twistable Functions , 2000, Journal of Mathematical Imaging and Vision.
[6] Mi-Suen Lee,et al. A Computational Framework for Segmentation and Grouping , 2000 .
[7] Steven W. Zucker,et al. Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[8] James A. Sethian,et al. Level Set Methods and Fast Marching Methods , 1999 .
[9] J. Morel,et al. An axiomatic approach to image interpolation. , 1998, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.
[10] Vicent Caselles,et al. Disocclusion by Joint Interpolation of Vector Fields and Gray Levels , 2003, Multiscale Model. Simul..
[11] C. Bajaj. Algebraic Geometry and its Applications , 1994 .
[12] Brian Cabral,et al. Imaging vector fields using line integral convolution , 1993, SIGGRAPH.
[13] Thomas C. Cecil,et al. Numerical methods for minimization problems constrained to S1 and S2 , 2004, Journal of Computational Physics.
[14] Pietro Perona,et al. Orientation diffusions , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[15] Mi-Suen Lee,et al. Grouping ., -, ->, [formula], into Regions, Curves, and Junctions , 1999, Comput. Vis. Image Underst..
[16] M. Crandall,et al. A TOUR OF THE THEORY OF ABSOLUTELY MINIMIZING FUNCTIONS , 2004 .
[17] G. Aronsson. Extension of functions satisfying lipschitz conditions , 1967 .
[18] Stanley Osher,et al. Image Decomposition and Restoration Using Total Variation Minimization and the H1 , 2003, Multiscale Model. Simul..
[19] S. Osher,et al. IMAGE DECOMPOSITION AND RESTORATION USING TOTAL VARIATION MINIMIZATION AND THE H−1 NORM∗ , 2002 .
[20] M. Wertheimer. Untersuchungen zur Lehre von der Gestalt. II , 1923 .
[21] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[22] James A. Sethian,et al. Level Set Methods and Fast Marching Methods/ J. A. Sethian , 1999 .
[23] Shimon Ullman,et al. Structural Saliency: The Detection Of Globally Salient Structures using A Locally Connected Network , 1988, [1988 Proceedings] Second International Conference on Computer Vision.
[24] Rachid Deriche,et al. Using Canny's criteria to derive a recursively implemented optimal edge detector , 1987, International Journal of Computer Vision.
[25] A. Granas,et al. Fixed Point Theory , 2003 .
[26] Ron Kimmel,et al. Orientation Diffusion or How to Comb a Porcupine , 2002, J. Vis. Commun. Image Represent..
[27] P. Lions,et al. Axioms and fundamental equations of image processing , 1993 .
[28] R. Jensen. Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient , 1993 .
[29] Pietro Perona. Orientation diffusions , 1998, IEEE Trans. Image Process..
[30] Guillermo Sapiro,et al. Diffusion of General Data on Non-Flat Manifolds via Harmonic Maps Theory: The Direction Diffusion Case , 2000, International Journal of Computer Vision.
[31] Tony F. Chan,et al. Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..