Krylov Subspace Methods on Supercomputers

This paper presents a short survey of recent research on Krylov subspace methods with emphasis on implementation on vector and parallel computers. Conjugate gradient methods have proven very useful on traditional scalar computers, and their popularity is likely to increase as three-dimensional models gain importance. A conservative approach to derive effective iterative techniques for supercomputers has been to find efficient parallel/vector implementations of the standard algorithms. The main source of difficulty in the incomplete factorization preconditionings is in the solution of the triangular systems at each step. A few approaches consisting of implementing efficient forward and backward triangular solutions are described in detail. Then polynomial preconditioning as an alternative to standard incomplete factorization techniques is discussed. Another efficient approach is to reorder the equations so as to improve the structure of the matrix to achieve better parallelism or vectorization. An overview of these ideas and others is given in this article, as well as an attempt to comment on their effectiveness or potential for different types of architectures.

[1]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[2]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[3]  H. Rutishauser Theory of Gradient Methods , 1959 .

[4]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[5]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[6]  Niel K. Madsen,et al.  Matrix Multiplication by Diagonals on a Vector/Parallel Processor , 1976, Inf. Process. Lett..

[7]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[8]  T. Manteuffel The Tchebychev iteration for nonsymmetric linear systems , 1977 .

[9]  T. Manteuffel Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration , 1978 .

[10]  R. Chandra Conjugate gradient methods for partial differential equations. , 1978 .

[11]  O. Widlund A Lanczos Method for a Class of Nonsymmetric Systems of Linear Equations , 1978 .

[12]  Omar Wing,et al.  A Computation Model of Parallel Solution of Linear Equations , 1980, IEEE Transactions on Computers.

[13]  N. Munksgaard,et al.  Solving Sparse Symmetric Sets of Linear Equations by Preconditioned Conjugate Gradients , 1980, TOMS.

[14]  O. Axelsson Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations , 1980 .

[15]  Kang C. Jea,et al.  Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods , 1980 .

[16]  T. Manteuffel An incomplete factorization technique for positive definite linear systems , 1980 .

[17]  D. O’Leary The block conjugate gradient algorithm and related methods , 1980 .

[18]  Y. Saad,et al.  A PARALLEL BLOCK STIEFEL METHOD FOR SOLVING POSITIVE DEFINITE SYSTEMS , 1981 .

[19]  Y. Saad Krylov subspace methods for solving large unsymmetric linear systems , 1981 .

[20]  W. James,et al.  A Conjugate Gradient-Truncated Direct Method for the Iterative Solution of the Reservoir Simulation Pressure Equation , 1981 .

[21]  Y. Saad The Lanczos Biorthogonalization Algorithm and Other Oblique Projection Methods for Solving Large Unsymmetric Systems , 1982 .

[22]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[23]  T. L. Jordan A Guide to Parallel Computation and Some Cray-1 Experiences , 1982 .

[24]  H. Elman Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .

[25]  Henk A. van der Vorst,et al.  A Vectorizable Variant of some ICCG Methods , 1982 .

[26]  Iain S. Duff,et al.  Sparse matrix test problems , 1982 .

[27]  David J. Evans,et al.  Parallel Processing Systems , 1982 .

[28]  David S. Kershaw,et al.  Solution of Single Tridiagonal Linear Systems and Vectorization of the ICCG Algorithm on the Cray-1 , 1982 .

[29]  Brian H. Rudall Parallel Processing Systems-An Advanced Course, Edited by David J. Evans Cambridge University Press, Cambridge, 1982 (£21) , 1983, Robotica.

[30]  L. Adams Iterative algorithms for large sparse linear systems on parallel computers , 1983 .

[31]  Y. Saad,et al.  Iterative Solution of Indefinite Symmetric Linear Systems by Methods Using Orthogonal Polynomials over Two Disjoint Intervals , 1983 .

[32]  C. Micchelli,et al.  Polynomial Preconditioners for Conjugate Gradient Calculations , 1983 .

[33]  Gérard Meurant,et al.  NUMERICAL EXPERIMENTS FOR THE PRECONDITIONED CONJUGATE GRADIENT METHOD ON THE CRAY X-MP/2 , 1984 .

[34]  D. O’Leary Ordering Schemes for Parallel Processing of Certain Mesh Problems , 1984 .

[35]  V.L. Peterson Impact of computers on aerodynamics research and development , 1984, Proceedings of the IEEE.

[36]  G. Meurant The block preconditioned conjugate gradient method on vector computers , 1984 .

[37]  G. Rodrigue,et al.  Preconditioning by incomplete block cyclic reduction , 1984 .

[38]  Lennart Johnsson HIGHLY CONCURRENT ALGORITHMS FOR SOLVING LINEAR SYSTEMS OF EQUATIONS , 1984 .

[39]  O. Axelsson,et al.  On some versions of incomplete block-matrix factorization iterative methods , 1984 .

[40]  T. Jordan CONJUGATE GRADIENT PRECONDITIONERS FOR VECTOR AND PARALLEL PROCESSORS , 1984 .

[41]  L. Adams m-Step Preconditioned Conjugate Gradient Methods , 1985 .

[42]  D. O’Leary,et al.  Multi-Splittings of Matrices and Parallel Solution of Linear Systems , 1985 .

[43]  Vector preconditioning for the conjugate gradient on CRAY-I and CDC CYBER 205 , 1985 .

[44]  O. Axelsson Incomplete block matrix factorization preconditioning methods. The ultimate answer , 1985 .

[45]  Yousef Saad,et al.  Solving Elliptic Difference Equations on a Linear Array of Processors , 1985 .

[46]  Y. Saad,et al.  Practical Use of Polynomial Preconditionings for the Conjugate Gradient Method , 1985 .

[47]  Owe Axelsson,et al.  A survey of preconditioned iterative methods for linear systems of algebraic equations , 1985 .

[48]  Beresford N. Parlett,et al.  Element Preconditioning Using Splitting Techniques , 1985 .

[49]  Y. Saad,et al.  Conjugate gradient-like algorithms for solving nonsymmetric linear systems , 1985 .

[50]  G. Golub,et al.  Block Preconditioning for the Conjugate Gradient Method , 1985 .

[51]  William Gropp,et al.  A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation , 1985, PP.

[52]  Youcef Saad,et al.  Parallel Implementations of Preconditioned Conjugate Gradient Methods. , 1985 .

[53]  O. Axelsson,et al.  On approximate factorization methods for block matrices suitable for vector and parallel processors , 1986 .

[54]  John G. Lewis,et al.  The Impact of Hardware Gather/Scatter on Sparse Gaussian Elimination , 1986, ICPP.

[55]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[56]  Mark K. Seager,et al.  Parallelizing conjugate gradient for the CRAY X-MP , 1986, Parallel Comput..

[57]  D J Kuck,et al.  Parallel Supercomputing Today and the Cedar Approach , 1986, Science.

[58]  H. F. Jordan,et al.  Is SOR Color-Blind? , 1986 .

[59]  Y. Saad,et al.  A hybrid Chebyshev Krylov subspace algorithm for solving nonsymmetric systems of linear equations , 1986 .

[60]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[61]  Henk A. van der Vorst,et al.  The performance of FORTRAN implementations for preconditioned conjugate gradients on vector computers , 1986, Parallel Comput..

[62]  Joel H. Saltz,et al.  Automated problem scheduling and reduction of synchronization delay effects , 1987 .

[63]  Dianne P. O'Leary,et al.  Parallel implementation of the block conjugate gradient algorithm , 1987, Parallel Comput..

[64]  William Jalby,et al.  The use of BLAS3 in linear algebra on a parallel processor with a hierarchical memory , 1987 .

[65]  J. Ortega,et al.  Solution of Partial Differential Equations on Vector and Parallel Computers , 1987 .

[66]  Gérard Meurant Multitasking the conjugate gradient method on the CRAY X-MP/48 , 1987, Parallel Comput..

[67]  T. Chan Analysis of preconditioners for domain decomposition , 1987 .

[68]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[69]  O. Axelsson A generalized conjugate gradient, least square method , 1987 .

[70]  Y. Saad Least squares polynomials in the complex plane and their use for solving nonsymmetric linear systems , 1987 .

[71]  Wha Wil Schilders,et al.  Semiconductor device modelling from the numerical point of view , 1987 .

[72]  Henk A. van der Vorst,et al.  Large tridiagonal and block tridiagonal linear systems on vector and parallel computers , 1987, Parallel Comput..

[73]  Anthony T. Chronopoulos A class of parallel iterative methods implemented on multiprocessors , 1987 .

[74]  E. L. Poole,et al.  Multicolor ICCG methods for vector computers , 1987 .

[75]  Thomas C. Oppe,et al.  The performance of ITPACK on vector computers for solving large sparse linear systems arising in sample oil reseervoir simulation problems , 1987 .

[76]  Owe Axelsson,et al.  Block preconditioning and domain decomposition methods. II , 1988 .

[77]  H. Simon,et al.  Two Conjugate-Gradient-Type Methods for Unsymmetric Linear Equations , 1988 .

[78]  Rami G. Melhem,et al.  Parallel solution of linear systems with striped sparse matrices , 1988, Parallel Comput..

[79]  P. Saylor,et al.  An optimum iterative method for solving any linear system with a square matrix , 1988 .

[80]  Yau Shu Wong Solving large elliptic difference equations on CYBER 205 , 1988, Parallel Comput..

[81]  R. Grimes,et al.  On vectorizing incomplete factorization and SSOR preconditioners , 1988 .

[82]  Doug Baxter,et al.  Preconditioned Krylov Solvers and Methods for Runtime Loop Parallelization , 1988 .

[83]  Youcef Saad,et al.  Solving large sparse eigenvalue problems on supercomputers , 1988 .

[84]  H. Walker Implementation of the GMRES method using householder transformations , 1988 .

[85]  L. Reichel,et al.  A stable Richardson iteration method for complex linear systems , 1988 .

[86]  A. Sameh,et al.  The behavior of conjugate gradient algorithms on a multivector processor with a hierarchical memory , 1988 .

[87]  S. J. Dennis C. Smolarski,et al.  Computing the Roots of Complex Orthogonal and Kernel Polynomials , 1988 .

[88]  J. Ortega Introduction to Parallel and Vector Solution of Linear Systems , 1988, Frontiers of Computer Science.

[89]  Kincho H. Law,et al.  Architecture and operation of a systolic engine for finite element computations , 1988 .

[90]  Howard C. Elman,et al.  Block-preconditioned conjugate-gradient-like methods for numerical reservoir simulation , 1988 .

[91]  Oliver A. McBryan,et al.  The Connection Machine: PDE solution on 65536 processors , 1988, Parallel Comput..

[92]  H. Simon Incomplete LU Preconditioners for Conjugate-Gradient-Type Iterative Methods , 1988 .

[93]  S. Ashby Polynomial Preconditioning for Conjugate Gradient Methods , 1988 .

[94]  O. Axelsson,et al.  Vectorizable preconditioners for elliptic difference equations in three space dimensions , 1989 .

[95]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[96]  S. Eisenstat,et al.  An experimental study of methods for parallel preconditioned Krylov methods , 1989, C3P.

[97]  Henk A. van der Vorst,et al.  ICCG and related methods for 3D problems on vector computers , 1989 .

[98]  H. V. D. Vorst,et al.  High Performance Preconditioning , 1989 .

[99]  Jacques Periaux,et al.  Domain decomposition methods; Proceedings of the Second International Symposium, Los Angeles, CA, Jan. 14-16, 1988 , 1989 .

[100]  R. Freund,et al.  On polynomial approximations to fa(Z)(z-a)−1 with complex a and some applications to certain non-hermitian matrices , 1989 .

[101]  Anne Greenbaum,et al.  Comparison of linear system solvers applied to diffusion-type finite element equations , 1989 .

[102]  H. Elman,et al.  Ordering techniques for the preconditioned conjugate gradient method on parallel computers , 1989 .

[103]  P. Vassilevski,et al.  Algebraic multilevel preconditioning methods. I , 1989 .

[104]  O. Axelsson,et al.  Algebraic multilevel preconditioning methods, II , 1990 .

[105]  R. Freund On conjugate gradient type methods and polynomial preconditioners for a class of complex non-hermitian matrices , 1990 .

[106]  G. Golub,et al.  ITERATIVE METHODS FOR CYCLICALLY REDUCED NON-SELF-ADJOINT LINEAR SYSTEMS , 1990 .

[107]  R. Glowinski,et al.  Third International Symposium on Domain Decomposition Methods for Partial Differential Equations , 1990 .

[108]  Courtenay T. Vaughan,et al.  Efficient Polynomial Preconditioning for the Conjugate Gradient Method , 1990, SIAM J. Sci. Comput..

[109]  L. Trefethen Approximation theory and numerical linear algebra , 1990 .

[110]  Peter N. Brown,et al.  A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..

[111]  G.,et al.  THE IMPLEMENTATION OF A BLOCK LANCZOS ALGORITHM WITH REORTHOGONALIZATION METHODS , .