Combinatorics of renormalization as matrix calculus

[1]  H. Figueroa,et al.  Faa di Bruno Hopf algebras , 2005, math/0508337.

[2]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[3]  Li Guo Matrix Representation of Renormalization in Perturbative Quantum Field Theory , 2005 .

[4]  Li Guo,et al.  Spitzer's identity and the algebraic Birkhoff decomposition in pQFT , 2004, hep-th/0407082.

[5]  G. Hooft Renormalization without infinities , 2004, hep-th/0405032.

[6]  Hagen Kleinert,et al.  Critical properties of φ4-theories , 2001 .

[7]  A. Connes,et al.  Renormalization in Quantum Field Theory and the Riemann–Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem , 1999, hep-th/9912092.

[8]  D. Broadhurst,et al.  Combinatoric explosion of renormalization tamed by Hopf algebra: 30-loop Padé-Borel resummation , 1999, hep-th/9912093.

[9]  A. Connes,et al.  Renormalization in Quantum Field Theory and the Riemann--Hilbert Problem II: The β-Function, Diffeomorphisms and the Renormalization Group , 1999, hep-th/9909126.

[10]  D. Kreimer Chen’s iterated integral represents the operator product expansion , 1999, hep-th/9901099.

[11]  D. Kreimer On the Hopf algebra structure of perturbative quantum field theories , 1997, q-alg/9707029.

[12]  F. Tkachov,et al.  EUCLIDEAN ASYMPTOTIC EXPANSIONS OF GREEN FUNCTIONS OF QUANTUM FIELDS (II) COMBINATORICS OF THE AS OPERATION , 1993, hep-ph/9612287.

[13]  A. Kennedy,et al.  Simple approach to renormalization theory , 1982 .

[14]  F. Atkinson,et al.  Some aspects of Baxter's functional equation , 1963 .