Weak Topological Insulators and Composite Weyl Semimetals: β-Bi4X4 (X=Br, I).
暂无分享,去创建一个
While strong topological insulators (STIs) were experimentally realized soon after they were theoretically predicted, a weak topological insulator (WTI) has yet to be unambiguously confirmed. A major obstacle is the lack of distinct natural cleavage surfaces to test the surface selective hallmark of a WTI. With a new scheme, we discover that β-Bi4X4 (X=Br, I), dynamically stable or synthesized before, can be a prototype WTI with two natural cleavage surfaces, where two anisotropic Dirac cones stabilize and annihilate, respectively. We further find four surface-state Lifshitz transitions under charge doping and two bulk topological phase transitions under uniaxial strain. Near the WTI-STI transition, there emerges a novel Weyl semimetal phase, in which the Fermi arcs generically appear at both cleavage surfaces whereas the Fermi circle only appears at one selected surface.
[1] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[2] G. Volovik,et al. The Universe in a Helium Droplet , 2003 .
[3] W. Marsden. I and J , 2012 .