A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals

Abstract. Systematic measurements of dust concentration profiles at a continental scale were recently made possible by the development of synergistic retrieval algorithms using combined lidar and sun photometer data and the establishment of robust remote-sensing networks in the framework of Aerosols, Clouds, and Trace gases Research InfraStructure Network (ACTRIS)/European Aerosol Research Lidar Network (EARLINET). We present a methodology for using these capabilities as a tool for examining the performance of dust transport models. The methodology includes considerations for the selection of a suitable data set and appropriate metrics for the exploration of the results. The approach is demonstrated for four regional dust transport models (BSC-DREAM8b v2, NMMB/BSC-DUST, DREAMABOL, DREAM8-NMME-MACC) using dust observations performed at 10 ACTRIS/EARLINET stations. The observations, which include coincident multi-wavelength lidar and sun photometer measurements, were processed with the Lidar-Radiometer Inversion Code (LIRIC) to retrieve aerosol concentration profiles. The methodology proposed here shows advantages when compared to traditional evaluation techniques that utilize separately the available measurements such as separating the contribution of dust from other aerosol types on the lidar profiles and avoiding model assumptions related to the conversion of concentration fields to aerosol extinction values. When compared to LIRIC retrievals, the simulated dust vertical structures were found to be in good agreement for all models with correlation values between 0.5 and 0.7 in the 1–6 km range, where most dust is typically observed. The absolute dust concentration was typically underestimated with mean bias values of -40 to -20 μg m−3 at 2 km, the altitude of maximum mean concentration. The reported differences among the models found in this comparison indicate the benefit of the systematic use of the proposed approach in future dust model evaluation studies.

[1]  B. White,et al.  Soil Transport by Winds on Mars , 1979 .

[2]  J. Klett Stable analytical inversion solution for processing lidar returns. , 1981, Applied optics.

[3]  A. Simmons,et al.  An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates , 1981 .

[4]  Consiglio Nazionale delle Ricerche,et al.  IRS '84 : current problems in atmospheric radiation : proceedings of the International Radiation Symposium, Perugia, Italy, 21-28 August 1984 , 1984 .

[5]  Fedor Mesinger,et al.  A blocking technique for representation of mountains in atmospheric models , 1984 .

[6]  J. Klett Lidar inversion with variable backscatter/extinction ratios. , 1985, Applied optics.

[7]  Alan K. Betts,et al.  A new convective adjustment scheme , 1985 .

[8]  E. Shettle,et al.  Optical and Radiative Properties of a Desert Aerosol Model , 1986 .

[9]  A. Betts A new convective adjustment scheme. Part I: Observational and theoretical basis , 1986 .

[10]  G. d’Almeida,et al.  On the variability of desert aerosol radiative characteristics , 1987 .

[11]  A. Ansmann,et al.  Combined raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio , 1992 .

[12]  Yaping Shao,et al.  Effect of Saltation Bombardment on the Entrainment of Dust by Wind , 1993 .

[13]  I. Fung,et al.  Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness , 1994 .

[14]  Z. Janjic The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes , 1994 .

[15]  B. Marticorena,et al.  Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme , 1995 .

[16]  Irina N. Sokolik,et al.  Direct radiative forcing by anthropogenic airborne mineral aerosols , 1996, Nature.

[17]  Z. Levin,et al.  The Effects of Desert Particles Coated with Sulfate on Rain Formation in the Eastern Mediterranean , 1996 .

[18]  Slobodan Nickovic,et al.  A Model for Long-Range Transport of Desert Dust , 1996 .

[19]  Andrew A. Lacis,et al.  Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol , 1996 .

[20]  Bernard Aumont,et al.  Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources , 1997 .

[21]  M. Schulz,et al.  Role of aerosol size distribution and source location in a three‐dimensional simulation of a Saharan dust episode tested against satellite‐derived optical thickness , 1998 .

[22]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[23]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[24]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[25]  J F Louis,et al.  Guidance for the Performance Evaluation of Three-Dimensional Air Quality Modeling Systems for Particulate Matter and Visibility , 2000, Journal of the Air & Waste Management Association.

[26]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[27]  M. Chin,et al.  Sources and distributions of dust aerosols simulated with the GOCART model , 2001 .

[28]  Gian Paolo Gobbi,et al.  Lidar estimation of tropospheric aerosol extinction, surface area and volume: Maritime and desert-dust cases , 2001 .

[29]  Yinon Rudich,et al.  Desert dust suppressing precipitation: A possible desertification feedback loop , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Leiming Zhang,et al.  A size-segregated particle dry deposition scheme for an atmospheric aerosol module , 2001 .

[31]  G. Kallos,et al.  A model for prediction of desert dust cycle in the atmosphere , 2001 .

[32]  Slobodan Nickovic,et al.  An Alternative Approach to Nonhydrostatic Modeling , 2001 .

[33]  Correction to “Lidar estimation of tropospheric aerosol extinction, surface area and volume: Maritime and desert‐dust cases” by F. Barnaba and G. P. Gobbi , 2002 .

[34]  Sonia M. Kreidenweis,et al.  African dust aerosols as atmospheric ice nuclei , 2003 .

[35]  A. Buzzi,et al.  A case‐study of an orographic cyclone south of the Alps during the MAP SOP , 2003 .

[36]  Ina Tegen,et al.  Modeling the mineral dust aerosol cycle in the climate system , 2003 .

[37]  J. Slusser,et al.  Field comparison of network Sun photometers , 2003 .

[38]  V. Freudenthaler,et al.  Long-range transport of Saharan dust to northern Europe : The 11-16 October 2001 outbreak observed with EARLINET , 2003 .

[39]  C. Zender,et al.  Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology , 2003 .

[40]  David M. Winker,et al.  Mesoscale Variations of Tropospheric Aerosols , 2003 .

[41]  David S. Covert,et al.  Variability of aerosol optical properties derived from in situ aircraft measurements during ACE‐Asia , 2003 .

[42]  A. Ansmann,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio. , 2004, Applied optics.

[43]  Steven S. Cliff,et al.  Evidence for hygroscopic mineral dust particles from the Intercontinental Transport and Chemical Transformation Experiment , 2004 .

[44]  Nobuo Sugimoto,et al.  Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia , 2004 .

[45]  A. Ansmann,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms. , 2004, Applied optics.

[46]  V. Freudenthaler,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. , 2004 .

[47]  V. Freudenthaler,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. , 2004, Applied optics.

[48]  Oleg Dubovik,et al.  Optimization of Numerical Inversion in Photopolarimetric Remote Sensing , 2004 .

[49]  J. Joseph,et al.  Vertical distribution of Saharan dust over Rome (Italy) : Comparison between 3-year model predictions and lidar soundings , 2005 .

[50]  Jun Zhou,et al.  Study of Asian Dust Phenomena in 2001–2003 Using A Network of Continuously Operated Polarization Lidars , 2005 .

[51]  Christos Zerefos,et al.  Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project , 2005 .

[52]  J. Baldasano,et al.  Interactive dust‐radiation modeling: A step to improve weather forecasts , 2006 .

[53]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[54]  V. Cachorro,et al.  A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling , 2006 .

[55]  L. Mona,et al.  Saharan dust intrusions in the Mediterranean area: Three years of Raman lidar measurements , 2006 .

[56]  A. A new convective adjustment scheme. Part I: Observational and theoretical basis , 2006 .

[57]  Y. Balkanski,et al.  Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data , 2006 .

[58]  Nobuo Sugimoto,et al.  Dust model intercomparison (DMIP) study over Asia: Overview , 2006 .

[59]  G. Kallos,et al.  Forecast errors in dust vertical distributions over Rome (Italy): Multiple particle size representation and cloud contributions , 2007 .

[60]  Oleg Dubovik,et al.  Mineral dust emission from the Bodélé Depression, northern Chad, during BoDEx 2005 , 2007 .

[61]  Lina Vitali,et al.  A comprehensive performance evaluation of the air quality model BOLCHEM to reproduce the ozone concentrations over Italy , 2008 .

[62]  L. Mona,et al.  Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002) , 2008 .

[63]  Soon-Chang Yoon,et al.  Global Surface-Based Sun Photometer Network for Long-Term Observations of Column Aerosol Optical Properties: Intercomparison of Aerosol Optical Depth , 2008 .

[64]  José María Baldasano,et al.  Contribution of Saharan dust in an integrated air quality system and its on‐line assessment , 2008 .

[65]  Juan Cuesta,et al.  Synergetic technique combining elastic backscatter lidar data and sunphotometer AERONET inversion for retrieval by layer of aerosol optical and microphysical properties. , 2008, Applied optics.

[66]  M. Razinger,et al.  Aerosol analysis and forecast in the European Centre for Medium‐Range Weather Forecasts Integrated Forecast System: 2. Data assimilation , 2009 .

[67]  Janina Fudała,et al.  Estimation of wind blown dust emissions in Europe and its vicinity , 2009 .

[68]  F. Olmo,et al.  Extreme Saharan dust event over the southern Iberian Peninsula in september 2007: active and passive remote sensing from surface and satellite , 2009 .

[69]  Albert Ansmann,et al.  Portable Raman Lidar Polly XT for Automated Profiling of Aerosol Backscatter, Extinction, and Depolarization , 2009 .

[70]  Albert Ansmann,et al.  Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008 , 2009 .

[71]  A. Ansmann,et al.  Regional Saharan dust modelling during the SAMUM 2006 campaign , 2009 .

[72]  J. Baldasano,et al.  Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun AERONET observations , 2009 .

[73]  E. Giannakaki,et al.  EARLINET observations of the 14–22-May long-range dust transport event during SAMUM 2006: validation of results from dust transport modelling , 2009 .

[74]  P. Goloub,et al.  Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network , 2009 .

[75]  U. Cubasch,et al.  Simulations of convectively‐driven density currents in the Atlas region using a regional model: Impacts on dust emission and sensitivity to horizontal resolution and convection schemes , 2009 .

[76]  Takemasa Miyoshi,et al.  Data assimilation of CALIPSO aerosol observations , 2009 .

[77]  BOLCHEM: An Integrated System for Atmospheric Dynamics and Composition , 2010 .

[78]  J. Prueger,et al.  Vertical distribution of aerosols in the vicinity of Mexico City during MILAGRO-2006 Campaign , 2010 .

[79]  Sara Basart,et al.  A full year evaluation of the CALIOPE-EU air quality modeling system over Europe for 2004 , 2010 .

[80]  Zev Levin,et al.  An integrated modeling study on the effects of mineral dust and sea salt particles on clouds and precipitation , 2010 .

[81]  D. Lawrence,et al.  Observed 20th century desert dust variability: Impact on climate and biogeochemistry , 2010 .

[82]  V. Cachorro,et al.  Synergetic monitoring of Saharan dust plumes and potential impact on surface: a case study of dust transport from Canary Islands to Iberian Peninsula , 2010 .

[83]  Vincenzo Cuomo,et al.  CIAO: the CNR-IMAA advanced observatory for atmospheric research , 2010 .

[84]  Slobodan Nickovic,et al.  Saharan dust and ice nuclei over Central Europe , 2010 .

[85]  Sara Basart,et al.  Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model – Part 2: Experimental campaigns in Northern Africa , 2011, Atmospheric Chemistry and Physics.

[86]  Albert Ansmann,et al.  Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010 , 2011 .

[87]  M. Wendisch,et al.  Regional modelling of Saharan dust and biomass-burning smoke , 2011 .

[88]  Ratko Vasic,et al.  A Class of Conservative Fourth-Order Advection Schemes and Impact of Enhanced Formal Accuracy on Extended-Range Forecasts , 2011 .

[89]  J. Guerrero-Rascado,et al.  Multi‐instrumental observation of an exceptionally strong Saharan dust outbreak over Portugal , 2011 .

[90]  Prashant Kumar,et al.  On the effect of dust particles on global cloud condensation nuclei and cloud droplet number , 2011 .

[91]  Prashant Kumar,et al.  Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals , 2011 .

[92]  Dhiraj Kumar,et al.  Six-channel polychromator design and implementation for the UPC elastic/Raman lidar , 2011, Remote Sensing.

[93]  Sara Basart,et al.  Aerosols in the CALIOPE air quality modelling system: evaluation and analysis of PM levels, optical depths and chemical composition over Europe , 2011 .

[94]  J. Perlwitz,et al.  Atmospheric dust modeling from meso to global scales with the online NMMB / BSC-Dust model – Part 1 : Model description , annual simulations and evaluation , 2011 .

[95]  R. Miller,et al.  Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model – Part 1: Model description, annual simulations and evaluation , 2011 .

[96]  Francesc Rocadenbosch,et al.  Backscatter Error Bounds for the Elastic Lidar Two-Component Inversion Algorithm , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[97]  P. Seifert,et al.  Profiling of fine and coarse particle mass: case studies of Saharan dust and Eyjafjallajökull/Grimsvötn volcanic plumes , 2012 .

[98]  Michaël Sicard,et al.  Algorithm and software for the retrieval of vertical aerosol properties using combined lidar/radiometer data: dissemination in EARLINET , 2012 .

[99]  L. Mona,et al.  Lidar Measurements for Desert Dust Characterization: An Overview , 2012 .

[100]  T. Takemura,et al.  Size‐resolved adjoint inversion of Asian dust , 2012 .

[101]  Variability of aerosol properties during the 2007–2010 spring seasons over central Europe , 2012, Acta Geophysica.

[102]  C. Pérez García-Pando,et al.  Development and evaluation of the BSC-DREAM8b dust regional model over Northern Africa, the Mediterranean and the Middle East , 2012 .

[103]  G. Kallos,et al.  Density currents as a desert dust mobilization mechanism , 2012 .

[104]  D. Tanré,et al.  Enhancement of aerosol characterization using synergy of lidar and sun - photometer coincident observations: the GARRLiC algorithm , 2013 .

[105]  J. Baldasano,et al.  Changes in particulate matter physical properties during Saharan advections over Rome (Italy): a four-year study, 2001–2004 , 2013 .

[106]  Doina Nicolae,et al.  Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations , 2013 .

[107]  David D. Turner,et al.  Full-Time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites: Instruments and Data Analysis , 2013 .

[108]  S. Nickovic,et al.  Atmospheric processing of iron carried by mineral dust , 2013 .

[109]  P. Seifert,et al.  Evaluation of the Lidar/Radiometer Inversion Code (LIRIC) to determine microphysical properties of volcanic and desert dust , 2013 .

[110]  José María Baldasano Recio,et al.  Application of a synergetic lidar and sunphotometer algorithm for the characterization of a dust event over Athens, Greece , 2013 .

[111]  M. Perrone,et al.  Vertically resolved aerosol properties by multi-wavelength lidar measurements , 2013 .

[112]  Sara Basart,et al.  The MACC-II 2007-2008 reanalysis: atmospheric dust evaluation and characterization over northern Africa and the Middle East , 2014 .

[113]  G. Pappalardo,et al.  Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS , 2014 .

[114]  N. Mahowald,et al.  The size distribution of desert dust aerosols and its impact on the Earth system , 2014 .

[115]  Sara Basart,et al.  Operational Dust Prediction , 2014 .

[116]  S. Morman,et al.  Dust and Human Health , 2014 .

[117]  E. Landulfo,et al.  Towards an instrumental harmonization in the framework of LALINET: dataset of technical specifications , 2014, Remote Sensing.

[118]  A. Ansmann,et al.  Retrieving aerosol microphysical properties by Lidar‐Radiometer Inversion Code (LIRIC) for different aerosol types , 2014 .

[119]  A. Ansmann,et al.  Fine and coarse dust separation with polarization lidar , 2014 .

[120]  J. Baldasano,et al.  Saharan Dust Deposition May Affect Phytoplankton Growth in the Mediterranean Sea at Ecological Time Scales , 2014, PloS one.

[121]  EARLINET all observations (2000-2010) , 2014 .

[122]  L. Mona,et al.  EARLINET dust observations vs. BSC-DREAM8b modeled profiles: 12-year-long systematic comparison at Potenza, Italy , 2014 .

[123]  V. Freudenthaler,et al.  EARLINET: towards an advanced sustainable European aerosol lidar network , 2014 .

[124]  L. Alados-Arboledas,et al.  Assimilation of lidar signals: application to aerosol forecasting in the western Mediterranean basin , 2014 .

[125]  W. Thomas,et al.  What is the benefit of ceilometers for aerosol remote sensing? An answer from EARLINET , 2014 .

[126]  The first ALINE measurements and intercomparison exercise on lidar inversion algorithms , 2014 .

[127]  V. Freudenthaler,et al.  Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET , 2015 .

[128]  Diofantos G. Hadjimitsis,et al.  EARLINET: potential operationality of a research network , 2015 .

[129]  C. Borrego,et al.  Seasonal patterns of Saharan dust over Cape Verde – a combined approach using observations and modelling , 2015 .

[130]  G. Pappalardo,et al.  Ceilometer Aerosol Profiling versus Raman Lidar in the Frame of Interact Campaign of Actris , 2016 .

[131]  Sarah Theiss,et al.  Elastic Lidar Theory Practice And Analysis Methods , 2016 .