Modelling Stochastic Foam Geometries for FE Simulations Using 3D Voronoi Cells

Abstract A method for generating realistic foam geometries is developed for modelling the structure of stochastic foams. The method employs 3D Voronoi cells as pores. The virtual geometries are subjected to loading with the use of finite element methods and the results are compared to experimental data for open cell Titanium foams. The method applies statistical control to geometrical characteristics and it's used to either replicate or virtually generate prototype foam structures.

[1]  D. Kaplan,et al.  Porosity of 3D biomaterial scaffolds and osteogenesis. , 2005, Biomaterials.

[2]  B. Eppley,et al.  Effects of material porosity on implant bonding strength in a craniofacial model. , 1990, The Journal of craniofacial surgery.

[3]  Naoyuki Nomura,et al.  Mechanical properties of porous titanium compacts prepared by powder sintering , 2003 .

[4]  Hanxing Zhu,et al.  EFFECTS OF CELL IRREGULARITY ON THE ELASTIC PROPERTIES OF OPEN-CELL FOAMS , 2000 .

[5]  M. Bram,et al.  Characterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modeling. , 2010, Acta biomaterialia.

[6]  Yan Li,et al.  Porosity and mechanical properties of porous titanium fabricated by gelcasting , 2008 .

[7]  W. Niu,et al.  Processing and properties of porous titanium using space holder technique , 2009 .

[8]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[9]  Damiano Pasini,et al.  Multiscale design and multiobjective optimization of orthopedic hip implants with functionally graded cellular material. , 2012, Journal of biomechanical engineering.

[10]  Guowei Ma,et al.  Modeling loading rate effect on crushing stress of metallic cellular materials , 2009 .

[11]  N. Petrinic,et al.  The compressive response of a titanium foam at low and high strain rates , 2011 .

[12]  David C. Dunand,et al.  Numerical modeling of pore size and distribution in foamed titanium , 2006 .

[13]  M Navarro,et al.  Biomaterials in orthopaedics , 2008, Journal of The Royal Society Interface.

[14]  Z. Ren,et al.  Computational modelling of irregular open‐cell foam behaviour under impact loading , 2008 .

[15]  Ronald H. Huesman,et al.  Tomographic reconstruction using an adaptive tetrahedral mesh defined by a point cloud , 2006, IEEE Transactions on Medical Imaging.

[16]  Shu Zhen,et al.  Metallic foams: their production, properties and applications , 1983 .

[17]  Thomas Imwinkelried,et al.  Mechanical properties of open-pore titanium foam. , 2007, Journal of biomedical materials research. Part A.