On the Tree-Degree of Graphs
暂无分享,去创建一个
[1] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[2] F. Gavril. The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .
[3] Anne Berry,et al. Generating All the Minimal Separators of a Graph , 2000, Int. J. Found. Comput. Sci..
[4] Martin Charles Golumbic,et al. Edge and vertex intersection of paths in a tree , 1985, Discret. Math..
[5] Jan Kratochvíl,et al. String graphs. II. recognizing string graphs is NP-hard , 1991, J. Comb. Theory, Ser. B.
[6] Norman J. Pullman. Clique Covering of Graphs IV. Algorithms , 1984, SIAM J. Comput..
[7] Kellogg S. Booth,et al. Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..
[8] Robert E. Tarjan,et al. Decomposition by clique separators , 1985, Discret. Math..
[9] Martin Charles Golumbic,et al. The edge intersection graphs of paths in a tree , 1985, J. Comb. Theory, Ser. B.
[10] M. Golumbic. Algorithmic graph theory and perfect graphs , 1980 .
[11] Ioan Todinca,et al. Minimal Triangulations for Graphs with "Few" Minimal Separators , 1998, ESA.
[12] Chak-Kuen Wong,et al. Covering edges by cliques with regard to keyword conflicts and intersection graphs , 1978, CACM.
[13] David G. Kirkpatrick,et al. Unit disk graph recognition is NP-hard , 1998, Comput. Geom..
[14] Derek G. Corneil,et al. Complexity of finding embeddings in a k -tree , 1987 .
[15] Ian Holyer,et al. The NP-Completeness of Some Edge-Partition Problems , 1981, SIAM J. Comput..
[16] P. Erdös,et al. The Representation of a Graph by Set Intersections , 1966, Canadian Journal of Mathematics.
[17] Dimitrios M. Thilikos,et al. Treewidth for Graphs with Small Chordality , 1997, Discret. Appl. Math..