Genetics of programmed cell death in C. elegans: past, present and future.

[1]  B. Bainbridge,et al.  Genetics , 1981, Experientia.

[2]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[3]  D. Hirsh,et al.  The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. , 1979, Developmental biology.

[4]  J. Sulston,et al.  Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans. , 1980, Developmental biology.

[5]  J. Sulston,et al.  The Caenorhabditis elegans male: postembryonic development of nongonadal structures. , 1980, Developmental biology.

[6]  A. M. Robertson,et al.  Morphology of programmed cell death in the ventral nerve cord of Caenorhabditis elegans larvae , 1982 .

[7]  J. Sulston,et al.  Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. , 1983, Science.

[8]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[9]  H. Horvitz,et al.  Egg-laying defective mutants of the nematode Caenorhabditis elegans. , 1983, Genetics.

[10]  H. Horvitz,et al.  Genetic control of programmed cell death in the nematode C. elegans , 1986, Cell.

[11]  Leon Avery,et al.  A cell that dies during wild-type C. elegans development can function as a neuron in a ced-3 mutant , 1987, Cell.

[12]  David L. Vaux,et al.  Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells , 1988, Nature.

[13]  H. Horvitz,et al.  Mechanisms and functions of cell death. , 1991, Annual review of cell biology.

[14]  H. Horvitz,et al.  Two C. elegans genes control the programmed deaths of specific cells in the pharynx. , 1991, Development.

[15]  Horvitz,et al.  Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. , 1991, Genetics.

[16]  I. Weissman,et al.  Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. , 1992, Science.

[17]  M. Hengartner,et al.  Caenorhabditis elegans gene ced-9 protects cells from programmed cell death , 1992, Nature.

[18]  H. Horvitz,et al.  The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. , 1992, Development.

[19]  AC Tose Cell , 1993, Cell.

[20]  S. Korsmeyer,et al.  Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH-terminal signal anchor sequence. , 1993, The Journal of biological chemistry.

[21]  Andrew D. Chisholm,et al.  Control of cell fates in the central body region of C. elegans by the homeobox gene lin-39 , 1993, Cell.

[22]  C. Thompson,et al.  bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death , 1993, Cell.

[23]  Shai Shaham,et al.  The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme , 1993, Cell.

[24]  C. Kenyon,et al.  A homeotic gene cluster patterns the anteroposterior body axis of C. elegans , 1993, Cell.

[25]  H. Steller,et al.  Genetic control of programmed cell death in Drosophila. , 1994, Science.

[26]  H. Horvitz,et al.  Activation of C. elegans cell death protein CED-9 by an ammo-acid substitution in a domain conserved in Bcl-2 , 1994, Nature.

[27]  Z. Oltvai,et al.  BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax , 1994, Nature.

[28]  H. Horvitz,et al.  C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2 , 1994, Cell.

[29]  Gerald M. Rubin,et al.  Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death , 1995, Cell.

[30]  H. Horvitz,et al.  Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2 , 1996, Nature.

[31]  R. Meadows,et al.  X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death , 1996, Nature.

[32]  Junying Yuan,et al.  Human ICE/CED-3 Protease Nomenclature , 1996, Cell.

[33]  H. Horvitz,et al.  An Alternatively Spliced C. elegans ced-4 RNA Encodes a Novel Cell Death Inhibitor , 1996, Cell.

[34]  A. Look,et al.  Reversal of apoptosis by the leukaemia-associated E2A–HLF chimaeric transcription factor , 1996, Nature.

[35]  C. Guenther,et al.  Asymmetric distribution of the C. elegans HAM-1 protein in neuroblasts enables daughter cells to adopt distinct fates. , 1996, Development.

[36]  H. Horvitz,et al.  Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities. , 1996, Genes & development.

[37]  H. Horvitz,et al.  The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. , 1996, Genes & development.

[38]  D. Vaux,et al.  CED-4—The Third Horseman of Apoptosis , 1997, Cell.

[39]  R. Terns,et al.  A deficiency screen for zygotic loci required for establishment and patterning of the epidermis in Caenorhabditis elegans. , 1997, Genetics.

[40]  N. Thornberry,et al.  Caspases: killer proteases. , 1997, Trends in biochemical sciences.

[41]  G. Núñez,et al.  Interaction and Regulation of the Caenorhabditis elegans Death Protease CED-3 by CED-4 and CED-9* , 1997, The Journal of Biological Chemistry.

[42]  G M Cohen,et al.  Caspases: the executioners of apoptosis. , 1997, The Biochemical journal.

[43]  A. Fraser,et al.  CED-4 induces chromatin condensation in Schizosaccharomyces pombe and is inhibited by direct physical association with CED-9 , 1997, Current Biology.

[44]  H. Horvitz,et al.  Caenorhabditis elegans CED-9 protein is a bifunctional cell-death inhibitor , 1997, Nature.

[45]  A. Chinnaiyan,et al.  Interaction of CED-4 with CED-3 and CED-9: A Molecular Framework for Cell Death , 1997, Science.

[46]  E. Koonin,et al.  Role of CED-4 in the activation of CED-3 , 1997, Nature.

[47]  S. Seshagiri,et al.  Caenorhabditis elegans CED-4 stimulates CED-3 processing and CED-3-induced , 1997, Current Biology.

[48]  E. Cheng,et al.  Conversion of Bcl-2 to a Bax-like death effector by caspases. , 1997, Science.

[49]  S. Srinivasula,et al.  Cytochrome c and dATP-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade , 1997, Cell.

[50]  A. Rosen,et al.  Macromolecular substrates for the ICE‐like proteases during apoptosis , 1997, Journal of cellular biochemistry.

[51]  Xiaodong Wang,et al.  Apaf-1, a Human Protein Homologous to C. elegans CED-4, Participates in Cytochrome c–Dependent Activation of Caspase-3 , 1997, Cell.

[52]  N. Thornberry The caspase family of cysteine proteases. , 1997, British medical bulletin.

[53]  H. Horvitz,et al.  C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180 , 1998, Nature.

[54]  H. Horvitz,et al.  The C. elegans Cell Corpse Engulfment Gene ced-7 Encodes a Protein Similar to ABC Transporters , 1998, Cell.

[55]  A. Strasser,et al.  The Bcl-2 family and cell death regulation. , 1998, Current opinion in genetics & development.

[56]  A. Chinnaiyan,et al.  The Death Inhibitory Molecules CED-9 and CED-4L Use a Common Mechanism to Inhibit the CED-3 Death Protease* , 1998, The Journal of Biological Chemistry.

[57]  Junying Yuan,et al.  Sealing one's fate: control of cell death in neurons , 1998, Current Opinion in Neurobiology.

[58]  H. Horvitz,et al.  The C. elegans Protein EGL-1 Is Required for Programmed Cell Death and Interacts with the Bcl-2–like Protein CED-9 , 1998, Cell.

[59]  V. Kidd,et al.  Proteolytic activities that mediate apoptosis. , 1998, Annual review of physiology.

[60]  M. Hengartner,et al.  Candidate Adaptor Protein CED-6 Promotes the Engulfment of Apoptotic Cells in C. elegans , 1998, Cell.

[61]  V. Dixit,et al.  Caspase-9, Bcl-XL, and Apaf-1 Form a Ternary Complex* , 1998, The Journal of Biological Chemistry.