Duality theory of semi-infinite programming

Duality theory of semi-infinite programming (SIP) has its roots in the theory of systems of linear inequalities, in the theory of uniform approximation of functions, and in the classical theory of moments.

[1]  R. J. Duffin,et al.  An Infinite Linear Program with a Duality Gap , 1965 .

[2]  K. Isii The extrema of probability determined by generalized moments (I) bounded random variables , 1960 .

[3]  Werner Krabs,et al.  Optimierung und Approximation , 1975 .

[4]  W. J. Studden,et al.  Tchebycheff Systems: With Applications in Analysis and Statistics. , 1967 .

[5]  Abraham Charnes,et al.  ON REPRESENTATIONS OF SEMI-INFINITE PROGRAMS WHICH HAVE NO DUALITY GAPS. , 1965 .

[6]  Kenneth O. Kortanek,et al.  Numerical treatment of a class of semi‐infinite programming problems , 1973 .

[7]  Sur une classe de fonctions représentées par des intégrales définies , 1883 .

[8]  An orthogonality theorem of dines related to moment problems and linear programming , 1967 .

[9]  Paul C. Rosenbloom Quelques classes de problèmes extrémaux. II , 1951 .

[10]  U. Eckhardt Theorems on the dimension of convex sets , 1975 .

[11]  Klaus Roleff,et al.  A stable multiple exchange algorithm for linear sip , 1979 .

[12]  Joachim Piehler Einführung in die lineare Optimierung , 1966 .

[13]  W W Cooper,et al.  DUALITY, HAAR PROGRAMS, AND FINITE SEQUENCE SPACES. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[14]  W. Rogosinski Moments of non-negative mass , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  A. Charnes,et al.  Duality in Semi-Infinite Programs and some Works of Haar and Caratheodory , 1963 .