Duality theory of semi-infinite programming
暂无分享,去创建一个
[1] R. J. Duffin,et al. An Infinite Linear Program with a Duality Gap , 1965 .
[2] K. Isii. The extrema of probability determined by generalized moments (I) bounded random variables , 1960 .
[3] Werner Krabs,et al. Optimierung und Approximation , 1975 .
[4] W. J. Studden,et al. Tchebycheff Systems: With Applications in Analysis and Statistics. , 1967 .
[5] Abraham Charnes,et al. ON REPRESENTATIONS OF SEMI-INFINITE PROGRAMS WHICH HAVE NO DUALITY GAPS. , 1965 .
[6] Kenneth O. Kortanek,et al. Numerical treatment of a class of semi‐infinite programming problems , 1973 .
[7] Sur une classe de fonctions représentées par des intégrales définies , 1883 .
[8] An orthogonality theorem of dines related to moment problems and linear programming , 1967 .
[9] Paul C. Rosenbloom. Quelques classes de problèmes extrémaux. II , 1951 .
[10] U. Eckhardt. Theorems on the dimension of convex sets , 1975 .
[11] Klaus Roleff,et al. A stable multiple exchange algorithm for linear sip , 1979 .
[12] Joachim Piehler. Einführung in die lineare Optimierung , 1966 .
[13] W W Cooper,et al. DUALITY, HAAR PROGRAMS, AND FINITE SEQUENCE SPACES. , 1962, Proceedings of the National Academy of Sciences of the United States of America.
[14] W. Rogosinski. Moments of non-negative mass , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[15] A. Charnes,et al. Duality in Semi-Infinite Programs and some Works of Haar and Caratheodory , 1963 .