Digital mapping of soil carbon

There is a global demand for soil data and information for food security and global environmental management. There is also great interest in recognizing the soil system as a significant terrestrial sink of carbon. The reliable assessment of soil carbon (C) stocks is of key importance for soil conservation and in mitigation strategies for increased atmospheric carbon. In this article, we review and discuss the recent advances in digital mapping of soil C. The challenge to map carbon is demonstrated with the large variation of soil C concentration at a field, continental, and global scale. This article reviews recent studies in mapping soil C using digital soil mapping approaches. The general activities in digital soil mapping involve collection of a database of soil carbon observations over the area of interest; compilation of relevant covariates (scorpan factors) for the area; calibration or training of a spatial prediction function based on the observed dataset; interpolation and/or extrapolation of the prediction function over the whole area; and finally validation using existing or independent datasets. We discuss several relevant aspects in digital mapping: carbon concentration and carbon density, source of data, sampling density and resolution, depth of investigation, map validation, map uncertainty, and environmental covariates. We demonstrate harmonization of soil depths using the equal-area spline and the use of a material coordinate system to take into consideration the varying bulk density due to management practices. Soil C mapping has evolved from 2-D mapping of soil C stock at particular depth ranges to a semi-3-D soil map allowing the estimation of continuous soil C concentration or density with depth. This review then discusses the dynamics of soil C and the consequences for prediction and mapping of soil C change. Finally, we illustrate the prediction of soil carbon change using a semidynamic scorpan approach.

[1]  Budiman Minasny,et al.  On digital soil mapping , 2003 .

[2]  Dominique Arrouays,et al.  Spatial distribution of soil organic carbon stocks in France , 2010 .

[3]  Sabine Grunwald,et al.  Digital Soil Mapping and Modeling at Continental Scales: Finding Solutions for Global Issues , 2011 .

[4]  D. Schwartz,et al.  Mapping the total organic carbon in the soils of the Congo , 2002 .

[5]  R. Lark,et al.  Carbon losses from all soils across England and Wales 1978–2003 , 2005, Nature.

[6]  Changsheng Li,et al.  Application of the DNDC model to the Rodale Institute Farming Systems Trial: challenges for the validation of drainage and nitrate leaching in agroecosystem models , 2010, Nutrient Cycling in Agroecosystems.

[7]  Budiman Minasny,et al.  Estimation and potential improvement of the quality of legacy soil samples for digital soil mapping , 2007 .

[8]  J. Hannam,et al.  Empirically‐derived pedotransfer functions for predicting bulk density in European soils , 2012 .

[9]  Budiman Minasny,et al.  Quantitative models for pedogenesis — A review , 2008 .

[10]  Durga L. Shrestha,et al.  Machine learning approaches for estimation of prediction interval for the model output , 2006, Neural Networks.

[11]  Cristine L. S. Morgan,et al.  Simulated in situ characterization of soil organic and inorganic carbon with visible near-infrared diffuse reflectance spectroscopy , 2009 .

[12]  Philippe Lagacherie,et al.  Digital soil mapping : an introductory perspective , 2007 .

[13]  C. Walter,et al.  Changes in soil organic carbon in a mountainous French region, 1990–2004 , 2008 .

[14]  Alex B. McBratney,et al.  Modelling soil attribute depth functions with equal-area quadratic smoothing splines , 1999 .

[15]  M. Fantappié,et al.  The influence of climate change on the soil organic carbon content in Italy from 1961 to 2008 , 2011 .

[16]  G. Kiely,et al.  Towards spatial geochemical modelling: Use of geographically weighted regression for mapping soil organic carbon contents in Ireland , 2011 .

[17]  Fabrizio Ungaro,et al.  Assessing and mapping topsoil organic carbon stock at regional scale: A scorpan kriging approach conditional on soil map delineations and land use , 2010 .

[18]  H. Jenny,et al.  The soil resource. Origin and behavior , 1983, Vegetatio.

[19]  M. Wiesmeier,et al.  Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem , 2011, Plant and Soil.

[20]  J. J. de Gruijter,et al.  An R package for spatial coverage sampling and random sampling from compact geographical strata by k-means , 2010, Comput. Geosci..

[21]  D. Smiles,et al.  The movement of water in swelling materials , 1968 .

[22]  Lammert Kooistra,et al.  Soil Organic Carbon mapping of partially vegetated agricultural fields with imaging spectroscopy , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[23]  E. Veldkamp,et al.  Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation , 2011, Proceedings of the National Academy of Sciences.

[24]  Gerard B. M. Heuvelink,et al.  Small scale digital soil mapping in Southeastern Kenya , 2008 .

[25]  Karin Viergever,et al.  Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia , 2009 .

[26]  A. Marchetti,et al.  Estimating Soil Organic Matter Content by Regression Kriging , 2010 .

[27]  Budiman Minasny,et al.  Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes , 2011 .

[28]  Budiman Minasny,et al.  Building and testing conceptual and empirical models for predicting soil bulk density , 2007 .

[29]  F. J. Pierce,et al.  Soil Carbon Maps , 2003 .

[30]  R. Sletten,et al.  Spatial distribution of soil organic carbon in northwest Greenland and underestimates of high Arctic carbon stores , 2010 .

[31]  Sabine Grunwald,et al.  Multi-criteria characterization of recent digital soil mapping and modeling approaches , 2009 .

[32]  M. Mendonça-Santos,et al.  Digital Soil Mapping of Topsoil Organic Carbon Content of Rio de Janeiro State, Brazil , 2010 .

[33]  B. Ellert,et al.  Calculation of organic matter and nutrients stored in soils under contrasting management regimes , 1995 .

[34]  H. I. Reuter,et al.  Mapping the CN Ratio of the Forest Litters in Europe-Lessons for Global Digital Soil Mapping , 2010 .

[35]  Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales. , 2009 .

[36]  K B.,et al.  Three-dimensional mapping of soil organic matter content using soil type-specific depth functions , 2010 .

[37]  James B. Reeves,et al.  Mid- and near-infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferralsols , 2006 .

[38]  L. Hoffmann,et al.  Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy , 2010 .

[39]  J. Qi,et al.  Total carbon mapping in glacial till soils using near-infrared spectroscopy, Landsat imagery and topographical information , 2007 .

[40]  A. Flores,et al.  A simplified approach for estimating soil carbon and nitrogen stocks in semi-arid complex terrain , 2011 .

[41]  Marieta Garcia-Bajo,et al.  The importance of inorganic carbon in soil carbon databases and stock estimates: a case study from England , 2011 .

[42]  P. Lagacherie,et al.  Chapter 22 Integrating Pedological Knowledge into Digital Soil Mapping , 2006 .

[43]  Gu Lb,et al.  Soil carbon stocks and land use change : a meta analysis , 2022 .

[44]  Paul E. Gessler,et al.  Modeling Soil–Landscape and Ecosystem Properties Using Terrain Attributes , 2000 .

[45]  Budiman Minasny,et al.  Methodologies for Global Soil Mapping , 2010 .

[46]  S. Grunwald,et al.  Upscaling of Dynamic Soil Organic Carbon Pools in a North‐Central Florida Watershed , 2010 .

[47]  M. Roderick,et al.  Soil carbon stocks and bulk density: spatial or cumulative mass coordinates as a basis of expression? , 2003 .

[48]  Rattan Lal,et al.  Predicting Soil Organic Carbon Stock Using Profile Depth Distribution Functions and Ordinary Kriging , 2009 .

[49]  Rattan Lal,et al.  Predicting the spatial variation of the soil organic carbon pool at a regional scale. , 2010 .

[50]  Bruno Mary,et al.  Modelling soil carbon dynamics with various cropping sequences on the rolling pampas , 1999 .

[51]  Luca Montanarella,et al.  Digital soil assessments: Beyond DSM , 2007 .

[52]  D. J. Brus,et al.  Sampling for Natural Resource Monitoring , 2006 .

[53]  Philippe Lagacherie,et al.  Using scattered hyperspectral imagery data to map the soil properties of a region , 2012 .

[54]  J. Triantafilis,et al.  Mapping the spatial distribution of subsurface saline material in the Darling River valley , 2010 .

[55]  Rattan Lal,et al.  Texture and organic carbon relations described by a profile pedotransfer function for Brazilian Cerrado soils , 2005 .

[56]  V. Viaud,et al.  Toward Landscape-Scale Modeling of Soil Organic Matter Dynamics in Agroecosystems , 2010 .

[57]  A. Kravchenko,et al.  Soil carbon mapping using on-the-go near infrared spectroscopy, topography and aerial photographs , 2011 .

[58]  R. M. Lark,et al.  Airborne radiometric survey data and a DTM as covariates for regional scale mapping of soil organic carbon across Northern Ireland , 2009 .

[59]  Martial Bernoux,et al.  Brazil's Soil Carbon Stocks , 2002 .

[60]  J. L. Boettinger,et al.  Conditioned Latin Hypercube Sampling: Optimal Sample Size for Digital Soil Mapping of Arid Rangelands in Utah, USA , 2010 .

[61]  Pierre Goovaerts,et al.  Fine-resolution mapping of soil organic carbon based on multivariate secondary data , 2006 .

[62]  A. Veldkamp,et al.  Long-term landscape - land use interactions as explaining factor for soil organic matter variability in Dutch agricultural landscapes , 2008 .

[63]  Budiman Minasny,et al.  Mapping continuous depth functions of soil carbon storage and available water capacity , 2009 .

[64]  Niels H. Batjes,et al.  Mapping soil carbon stocks of Central Africa using SOTER , 2008 .

[65]  W. Schlesinger Carbon Balance in Terrestrial Detritus , 1977 .

[66]  Dominique Arrouays,et al.  Estimating and mapping the carbon saturation deficit of French agricultural topsoils , 2011 .

[67]  S. de Bruin,et al.  Implementation and evaluation of existing knowledge for digital soil mapping in Senegal , 2009 .

[68]  W. A. Adams THE EFFECT OF ORGANIC MATTER ON THE BULK AND TRUE DENSITIES OF SOME UNCULTIVATED PODZOLIC SOILS , 1973 .

[69]  K. Tochtermann,et al.  Environmental Communication in the Information Society , 2002 .

[70]  Budiman Minasny,et al.  A conditioned Latin hypercube method for sampling in the presence of ancillary information , 2006, Comput. Geosci..

[71]  J. J. de Gruijter,et al.  Design-based Generalized Least Squares estimation of status and trend of soil properties from monitoring data , 2011 .

[72]  J. Wilford A weathering intensity index for the Australian continent using airborne gamma-ray spectrometry and digital terrain analysis , 2012 .

[73]  R. B. Jackson,et al.  THE VERTICAL DISTRIBUTION OF SOIL ORGANIC CARBON AND ITS RELATION TO CLIMATE AND VEGETATION , 2000 .

[74]  Alex B. McBratney,et al.  Spatio‐Temporal Simulation of the Field‐Scale Evolution of Organic Carbon over the Landscape , 2003 .

[75]  R. Valentini,et al.  SOIL CARBON STOCKS IN ECOREGIONS OF AFRICA , 2009 .

[76]  F. H. C. Marriott,et al.  An improved method for reconstructing a soil profile from analyses of a small number of samples , 1986 .

[77]  Philippe Lagacherie,et al.  Applying blind source separation on hyperspectral data for clay content estimation over partially vegetated surfaces , 2011 .

[78]  Sabine Grunwald,et al.  Regional modelling of soil carbon at multiple depths within a subtropical watershed. , 2010 .

[79]  Budiman Minasny,et al.  Is soil carbon disappearing? The dynamics of soil organic carbon in Java , 2011 .

[80]  Sabine Grunwald,et al.  Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra , 2008 .

[81]  Xuezheng Shi,et al.  Spatial Prediction and Uncertainty Assessment of Soil Organic Carbon in Hebei Province, China , 2010 .

[82]  D. Smiles Quantifying carbon and sulphate loss in drained acid sulphate soils , 2009 .

[83]  R. Lark,et al.  Geostatistics for Environmental Scientists , 2001 .

[84]  A. McBratney,et al.  Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – Critical review and research perspectives , 2011 .

[85]  Vincent Chaplot,et al.  Estimating carbon stocks at a regional level using soil information and easily accessible auxiliary variables. , 2010 .

[86]  Wilfred M. Post,et al.  Soil carbon pools and world life zones , 1982, Nature.

[87]  S. Ogle,et al.  Semiparametric Mixed Models for Increment-Averaged Data With Application to Carbon Sequestration in Agricultural Soils , 2007 .

[88]  Budiman Minasny,et al.  From pedotransfer functions to soil inference systems , 2002 .

[89]  J. Nyssen,et al.  Spatial and temporal variation of soil organic carbon stocks in a lake retreat area of the Ethiopian Rift Valley , 2008 .

[90]  D. Mcgarry,et al.  The Analysis of Volume Change in Unconfined Units of Soil , 1987 .

[91]  W. Dietrich,et al.  Spatial patterns of soil organic carbon on hillslopes : Integrating geomorphic processes and the biological C cycle , 2006 .

[92]  A. Dobermann Shifting ground—the changing agricultural soils of China and Indonesia , 2002 .

[93]  R. Sletten,et al.  Correction to “Spatial distribution of soil organic carbon in northwest Greenland and underestimates of high Arctic carbon stores” , 2010 .

[94]  B. Minty,et al.  Chapter 16 The Use of Airborne Gamma-ray Imagery for Mapping Soils and Understanding Landscape Processes , 2006 .

[95]  Keith McCloy,et al.  Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: the case study of Denmark. , 2010, Journal of environmental management.

[96]  K. Paustian,et al.  Predicted soil organic carbon stocks and changes in Jordan between 2000 and 2030 made using the GEFSOC Modelling System , 2007 .

[97]  Frank Canters,et al.  A multiple regression approach to assess the spatial distribution of Soil Organic Carbon (SOC) at the regional scale (Flanders, Belgium) , 2008 .

[98]  Budiman Minasny,et al.  Mapping and comparing the distribution of soil carbon under cropping and grazing management practices in Narrabri, north-west New South Wales , 2010 .

[99]  Gerard B. M. Heuvelink,et al.  Sampling for validation of digital soil maps , 2011 .

[100]  Jeroen Meersmans,et al.  Modelling the three-dimensional spatial distribution of soil organic carbon (SOC) at the regional scale (Flanders, Belgium) , 2009 .

[101]  N. McKenzie,et al.  Spatial prediction of soil properties using environmental correlation , 1999 .

[102]  Alfred E. Hartemink,et al.  Predicting soil properties in the tropics , 2011 .

[103]  D. Angers,et al.  Full‐Inversion Tillage and Organic Carbon Distribution in Soil Profiles: A Meta‐Analysis , 2008 .

[104]  Dominique Arrouays,et al.  MODELING CARBON STORAGE PROFILES IN TEMPERATE FOREST HUMIC LOAMY SOILS OF FRANCE , 1994 .

[105]  J. Six,et al.  Determining soil carbon stock changes: Simple bulk density corrections fail , 2009 .

[106]  N. Batjes,et al.  Total carbon and nitrogen in the soils of the world , 1996 .

[107]  H. Bourennane,et al.  Modeling vertical distribution of carbon in oxisols of the Western Brazilian Amazon (Rondonia) , 1998 .

[108]  Martial Bernoux,et al.  Mapping organic carbon stocks in eucalyptus plantations of the central highlands of Madagascar: A multiple regression approach , 2011 .

[109]  F. Nachtergaele,et al.  AMOUNTS, DYNAMICS AND SEQUESTERING OF CARBON IN TROPICAL AND SUBTROPICAL SOILS , 1993 .

[110]  U. Schmidhalter,et al.  High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures , 2006 .

[111]  L. West,et al.  Field-Scale Mapping of Surface Soil Organic Carbon Using Remotely Sensed Imagery , 2000 .

[112]  Budiman Minasny,et al.  Prediction and digital mapping of soil carbon storage in the Lower Namoi Valley , 2006 .

[113]  S. K. Ray,et al.  Modelled soil organic carbon stocks and changes in the Indo-Gangetic Plains, India from 1980 to 2030 , 2007 .

[114]  K. Paustian,et al.  Predicted soil organic carbon stocks and changes in Kenya between 1990 and 2030 , 2007 .

[115]  J. O. Legg Study Week on Organic Matter and Soil Fertility , 1971 .

[116]  H. Elsenbeer,et al.  Soil organic carbon concentrations and stocks on Barro Colorado Island — Digital soil mapping using Random Forests analysis , 2008 .

[117]  R. Lal,et al.  Soil Carbon Sequestration Impacts on Global Climate Change and Food Security , 2004, Science.

[118]  John Triantafilis,et al.  Field level digital soil mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model , 2009 .

[119]  Budiman Minasny,et al.  Chapter 21 Soil Prediction with Spatially Decomposed Environmental Factors , 2006 .

[120]  W. Mulder On the Theory of Electrostatic Interactions in Suspensions of Charged Colloids , 2010 .

[121]  R. Reese Geostatistics for Environmental Scientists , 2001 .

[122]  A. McBratney,et al.  A continuum approach to soil classification by modified fuzzy k‐means with extragrades , 1992 .

[123]  Holly K. Gibbs,et al.  New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 , 2008 .

[124]  R. Webster Mathematical treatment of soil information , 1978 .

[125]  James B. Reeves,et al.  Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done? , 2010 .

[126]  B. Wesemael,et al.  Spatial analysis of soil organic carbon evolution in Belgian croplands and grasslands, 1960–2006 , 2011 .

[127]  M. Galdos,et al.  Near infrared spectroscopy for soil bulk density assessment , 2009 .

[128]  Neil McKenzie The Australian Soil Resource Information System , 2004 .

[129]  Martial Bernoux,et al.  National and sub-national assessments of soil organic carbon stocks and changes: The GEFSOC modelling system , 2007 .

[130]  Randall K. Kolka,et al.  Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling. , 2005 .

[131]  R. V. Rossel,et al.  Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study , 2008 .

[132]  Alfred E. Hartemink,et al.  Digital soil mapping: bridging research, environmental application, and operation , 2010 .