Photoluminescence and lasing in whispering gallery mode glass microspherical resonators

Abstract We report experimental results regarding the development of Er 3+ -doped glass microspherical cavities for the fabrication of compact sources at 1.55 μm. We investigate several different approaches in order to fabricate the microspheres including direct melting of Er 3+ -doped glass powders, synthesis of Er 3+ -doped monolithic microspheres by drawing Er 3+ -doped glass, and coating of silica microspheres with an Er 3+ -doped sol–gel layer. Details of the different fabrication processes are presented together with the photoluminescence characterization in free space configuration of the microspheres and of the glass precursor. We have analyzed the photoluminescence spectra of the whispering gallery modes of the microspheres excited using evanescent coupling and we demonstrate tunable laser action in a wide range of wavelengths around 1.55 μm. As much as 90 μW of laser output power was measured in Er 3+ -doped glass microspheres.

[1]  Alessandro Chiasera,et al.  Spherical whispering‐gallery‐mode microresonators , 2010 .

[2]  Alessandro Chiasera,et al.  Spectroscopic and lasing properties of Er3+-doped glass microspheres , 2006 .

[3]  A. Ikiades,et al.  Photosensitivity of ion-exchanged Er-doped phosphate glass using 248nm excimer laser radiation. , 2004, Optics express.

[4]  Younes Messaddeq,et al.  Sol-gel Er-doped SiO2–HfO2 planar waveguides: A viable system for 1.5 μm application , 2002 .

[5]  W. L. Bond,et al.  Stimulated Emission into Optical Whispering Modes of Spheres , 1961 .

[6]  G. Stephan,et al.  Whispering-gallery-mode laser at 1.56 mum excited by a fiber taper. , 2001, Optics letters.

[7]  Yantang Huang,et al.  High efficiency white luminescence in Tm3+/Er3+/Yb3+ tri-doped oxyfluoride glass ceramic microsphere pumped by 976 nm laser , 2015 .

[8]  Patrice Féron,et al.  Second-harmonic generation using tailored whispering gallery modes , 2007 .

[9]  Jonathan M. Ward,et al.  WGM microresonators: sensing, lasing and fundamental optics with microspheres , 2011 .

[10]  Síle Nic Chormaic,et al.  Short vertical tube furnace for the fabrication of doped glass microsphere lasers. , 2010, The Review of scientific instruments.

[11]  Patrice Féron,et al.  Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers , 2008 .

[12]  L C Kimerling,et al.  Pedestal antiresonant reflecting waveguides for robust coupling to microsphere resonators and for microphotonic circuits. , 2000, Optics letters.

[13]  Zheng-Fu Han,et al.  Low-Threshold Microlaser in Er : Yb Phosphate Glass Coated Microsphere , 2008, IEEE Photonics Technology Letters.

[14]  W. Peng,et al.  High-temperature fiber optic cubic-zirconia pressure sensor - article no. 124402 , 2005 .

[15]  M. Popall,et al.  Applications of hybrid organic–inorganic nanocomposites , 2005 .

[16]  Roberta Ramponi,et al.  Tailoring of the free spectral range and geometrical cavity dispersion of a microsphere by a coating layer. , 2014, Optics letters.

[17]  Xiaoshun Jiang,et al.  Demonstration of an erbium-doped microsphere laser on a silicon chip , 2013 .

[18]  S. Haroche,et al.  Very low threshold green lasing in microspheres by up-conversion of IR photons , 2000 .

[19]  K. Vahala,et al.  Gain functionalization of silica microresonators. , 2003, Optics letters.

[20]  Keiji Sasaki,et al.  Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus , 2007 .

[21]  Kenneth T. V. Grattan,et al.  Characteristics of Er and Er–Yb–Cr doped phosphate microsphere fibre lasers , 2009 .

[22]  Stefano Pelli,et al.  Microsphere laser in Er3+-doped oxide glasses , 2004, Iberoamerican Meeting of Optics and the Latin American Meeting of Optics, Lasers and Their Applications.

[23]  K. Vahala,et al.  Ultralow-threshold Raman laser using a spherical dielectric microcavity , 2002, Nature.

[24]  Thanh Son Pham,et al.  Control of whispering-gallery-mode spectrum from erbium-doped silica microsphere lasers , 2013 .

[25]  Younes Messaddeq,et al.  Low optical loss planar waveguides prepared in an organic-inorganic hybrid system , 2000 .

[26]  K. Vahala,et al.  Fiber-optic add-drop device based on a silica microsphere-whispering gallery mode system , 1999, IEEE Photonics Technology Letters.

[27]  J. Ward,et al.  A Taper-Fused Microspherical Laser Source , 2008, IEEE Photonics Technology Letters.

[28]  Kerry J. Vahala,et al.  Erbium-implanted silica microsphere laser , 2006 .

[29]  Patrice Féron,et al.  Erbium-doped microspherical lasers at 1.56 [micro sign]m , 2000 .

[30]  Vladimir S. Ilchenko,et al.  Quality-factor and nonlinear properties of optical Whispering-Gallery modes , 1989 .

[31]  A. Campillo,et al.  Optical processes in microcavities , 1996 .

[32]  Serge Haroche,et al.  Towards cavity-QED experiments with silica microspheres , 1997 .

[33]  Lan Yang,et al.  Whispering gallery microcavity lasers , 2013 .

[34]  Davor Ristic,et al.  High quality factor optical resonators , 2013 .

[35]  K. Vahala,et al.  Fiber-coupled microsphere laser. , 2000, Optics letters.

[36]  S. Arnold,et al.  Whispering-gallery-mode biosensing: label-free detection down to single molecules , 2008, Nature Methods.

[37]  Andrea Barucci,et al.  Whispering gallery mode aptasensors for detection of blood proteins. , 2013, Journal of biophotonics.

[38]  J. Raimond,et al.  Very low threshold whispering-gallery-mode microsphere laser. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[39]  Shibin Jiang,et al.  Er 3+ -doped tellurite glass microsphere laser: optical properties, coupling scheme, and lasing characteristics , 2005 .